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ABSTRACT

Over the past 50 years, the integrated circuit (IC) industry has grown rapidly, following

the famous “Moore’s law.” The process feature size keeps shrinking, whereby the performance

of digital circuits is constantly enhanced and their cost constantly decreases. However, with

the system integration and the development of system on chip (SoC), nearly all of today’s ICs

contain analog/mixed-Signal circuits. Although a mixed-signal SoC is primarily digital, the

analog circuit design and verification consume most of the resources, and the dominant source

of IC breakdowns is attributable to the analog circuits.

One important reason for the high cost and risk of breakdowns of analog circuits is that

the technology advancement does not benefit many analog and mixed-signal circuits, and in

fact imposes higher requirements on their performance. With process scaling, many important

parameters of integrated circuit components degrade, which cause a drop in many key aspects

of performance of analog circuits. Many analog circuits rely on matched circuit components

(transistors, resistors, or capacitors) to achieve the required linearity performance; examples

are amplifiers, digital-to-analog converters (DACs), etc. However, shrinking of the feature sizes

increases the circuit components mismatch, thereby making it more difficult to maintain circuit

accuracy.

Therefore, to reduce the cost of analog circuit design, designers should propose new struc-

tures whose key performance can be improved by the technology scaling. In this dissertation, we

propose a low-cost, high-precision DAC structure based on ordered element matching (OEM)

theory. High matching accuracy can be achieved by applying OEM calibration to the resistors

in unary weighted segments and calibrating the gain error between different segments by cali-

bration DAC (CalDAC). As a design example to verify the proposed structure, a high-precision

DAC is designed in a 130 nm Global Foundry (GF) CMOS process. The 130 nm GF process

features high-density digital circuits and is a typical process which is constantly enhanced by
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the scaling of device dimensions and voltage supply; implementation of a high-precision DAC

in such process is important to decreasing the costs of high-precision DAC designs. As a re-

sult, our proposed DAC structure is demonstrated to be able to significantly lower the cost of

high-precision DAC design.

Another reason for the high cost and risk of breakdowns of analog circuits arises from the

complexity of analog circuit working states. Most digital circuits serve as logic functions, so that

digital transistors work in only two states, either low or high. In contrast, analog circuits have

much more complicated functions; they may work in multiple operating points, since various

feedback approaches are applied in analog circuits to enhance their performance. Circuits with

undetected operating points can be devastating, particularly when they are employed in critical

applications such as automotive, health care, and military products. However, since the existing

circuit simulators provide only a single operating point, recognizing the existence of undesired

operating points depends largely on the experiences of designers. In some circuits, even the most

experienced designers may not be aware that a circuit they designed has undesired operating

points, which often go undetected in the standard simulations in the design process.

To identify undesired operating points in an analog circuit and reduce its risk of break-

downs, a systematic verification method against undesired operating points in analog circuits

is proposed in this dissertation. Unlike traditional methods of finding all operating points, this

method targets only searches for voltage intervals containing undesired operating points. To

achieve this, our method first converts the circuit into a corresponding graph and locates the

break point to break all the positive feedback loops (PFLs). For one dimensional verification,

divide and contraction algorithms could be applied to identify undesired operating points. Two

dimensional vector field methods are used to solve the two dimensional verifications. Based

on the proposed verification methods against undesired operating points, an EDA tool called

“ITV” is developed to identify undesired operating points in analog and mixed-signal circuits.

Simulation results show ITV to be effective and efficient in identifying undesired operating

points in a class of commonly used benchmark circuits that includes bias generators, voltage

references, temperature sensors, and op-amp circuits.
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CHAPTER 1. INTRODUCTION

1.1 Background

With the development of the IC industry, the mixed-signal SoC, which integrates all com-

ponents of a computer or other electronic systems, has become more and more widely used.

It may contain digital circuits, analog, mixed-signal, and other function blocks, all on a single

chip. Compared with a combination of individual chips, an SoC has a great cost advantage.

First, the SoC is much smaller because of its high integration. This allows the complete com-

puter to be put into smart phones and tablets and still leave plenty of room for batteries.

In addition, because of its very high level of integration and much less wiring, an SoC uses

considerably less power, which is a big advantage for mobile computing. Moreover, decreasing

the number of physical chips makes it much cheaper to build a computer or electronic system

using an SoC [1]. Although an SoC is composed mainly of digital circuits, the analog circuit

design and verification consumes more than 75 percent of the total resources [2]. Moreover,

more than 78 percent of electronic breakdowns are due to the analog circuits [3]. The high

cost and risks of breakdowns in analog circuits are due to the great differences in design and

verification between analog and digital circuits.

Although the performance of digital circuits is constantly enhanced by the scaling of device

dimensions and voltage supply, this technology advancement does not benefit many analog and

mixed-signal circuits and in fact imposes higher requirements on their performance. With pro-

cess scaling, many important parameters of the integrated circuit components degrade, which

causes decreases in key performance of analog circuits. One important specification of analog

circuits is their linearity, which is dependent on matched circuit components such as transis-

tors, resistors, or capacitors. For example, linearity performance of amplifiers mainly relies
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on the matching of their input transistor pairs. Another example is seen in the high-precision

digital-to-analog converter (DAC), which relies on matched resistor arrays to perform its data

conversion tasks. However, the shrinking of feature sizes increases the circuit components mis-

match [4], thereby requiring greater effort to maintain circuit accuracy. With process scaling,

some analog circuits may maintain or improve their linearity performance by use of a larger

die area or more complicated calibration circuits. However, other analog circuits, such as high-

precision DACs can be implemented only by high-precision analog process, and can barely

be compatible with the process features high-density digital circuits. Thus, it is impossible

to integrate analog circuits such as high-precision DACs into an SoC system, and the cost of

implementing such circuits is high and hardly benefits from the process scaling.

The high risk of the analog circuit arises from the complexity of its working states. Most

digital circuits serve as logic functions, so that digital transistors work in only two states,

either low or high, which makes tests for digital circuits easily standardized. Standard test

technologies such as scan, JTAG, LBIST, MBIST are all widely used to address the digital

circuit tests problem, which explains the low failure rate of digital circuits. In contrast, analog

circuits have much more complicated functions; they amplify signals, stabilize the power supply,

or convert digital signals to analog signals, among others. Because of the complicated functions

of analog circuits, there is no standard way to test and verify them. Most of the analog tests

depend only on the experience of test engineers, who have to write as many tests as possible to

cover the specification in the time available and to maintain the test cost in a reasonable range

relative to the selling price [3]. Since the analog test is by far the dominant test cost, it has

even changed the role of analog circuit design engineers. Formerly, they focused only on circuit

designs, but now they must be involved in numerous analog circuit designs and verification to

reduce the test costs. However, even with the help of circuit designers, some analog circuit test

and verification problems still cannot be detected, resulting in circuit failures.

The existence of multiple operating points is one of the most important, although often

ignored, problems in analog circuit test and verification. While various feedback approaches,

e.g., self-biasing [5], bootstrapping [6], and digitally-assisted-analog [7] have been applied to

analog circuits, these may make a system vulnerable to multiple operating points. The exis-
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tence of undetected operating points can be devastating, particularly in circuits employed in

critical systems such as automotive, health care, and military products. However, since the

existing circuit simulators provide only a single operating point [8], recognizing the existence

of undesired operating points largely depends on the experience of designers. In some circuits,

even the most experienced designers are not aware that a circuit they designed has undesired

operating points, which often go undetected in the standard simulations in the design process.

Since most analog circuits are not kept in constant working environment now, and because of

Process/Voltage supply/Temperature (PVT) variations, the existence of undesired operating

point may be detected. It can be very costly if an undesired operating point in the circuit

is first detected in the field by a customer. On the other hand, more and more basic circuits

are being designed by new graduates or inexperienced analog engineers and circuit designers

who continuously adding “smart components” in their design utilizing feedback. Consequently,

undesired operating points are becoming an increasingly widespread and insidious problem

plaguing the circuit design industry.

1.2 Contribution of this Dissertation

To reduce the cost of analog circuit design, designers should propose new structures whose

key performance can be improved by the technology scaling. In this dissertation, we use the

high-precision DAC circuit as a low-cost design example and propose a low-cost, high-precision

DAC structure based on OEM theory. The DAC is one of the circuits for which demands

for high-accuracy requirements are increasing in precision medical, instrumentation, and test

and measurement applications. The existing high-precision DACs require a large die area,

high-precision analog process, advanced resistor trimming technique, complicated calibration

circuits and additional test costs. As a result, their cost is high and difficult to reduce, since

their implementation can hardly benefit from the scaling of digital circuits.

Random mismatch errors in resistor networks are dominant nonlinearity sources in high

resolution and high accuracy resistor DACs. It has been rigorously proven and verified that

ordered element matching (OEM) technology could significantly reduce the random mismatch

errors and improve the linearity performance of DACs. More importantly, implementation
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of this technique relies on digital circuits only, and its test method is consistent with the

traditional INL test, making it a very prosperous technique of implementing a low-cost, high-

precision DAC. In this dissertation, a low-cost, high-precision DAC structure based on OEM

theory is proposed. It can achieve high matching accuracy by applying the OEM calibration

to the resistors in unary weighted segments and calibrating the gain error between different

segments by calibration DAC (CalDAC).

As a design example to verify the proposed structure, a high-precision DAC is designed

in a 130 nm Global Foundry (GF) CMOS process. The 130 nm GF process features high-

density digital circuits but lacks high-precision resistors or any resistor trimming techniques,

making it generally unsuitable for any high-precision DAC design. However, we implemented

our design in such process from a behavioral model to a schematic and a layout design. The

simulation and measurement results show the proposed DAC structure can greatly reduce the

area requirement and make it possible to implement a high-precision DAC without use of a

high-precision fabrication process. Since the 130 nm GF process is a typical process that is

constantly enhanced by the scaling of the device dimensions and voltage supply, implementation

of a high-precision DAC in such a process is an important means of decreasing the cost of high-

precision DAC design. As a result, our proposed DAC structure is demonstrated to be able to

significantly lower the cost of high-precision DAC design.

To reduce the cost and risk of breakdowns of analog circuits, identifying and removing un-

desired operating points is one of the most important problems. In this dissertation, a divide

and contraction verification method against undesired operating points in analog circuits is

proposed. Unlike traditional methods to find all operating points, this method searches for

only the voltage intervals containing undesired operating points. To achieve this, a systematic

approach to automatically identifying all positive and negative feedback loops in circuits is

introduced. A positive feedback loop breaking method and selection of breaking nodes are

discussed to determine whether a monotonic return function can be obtained. Depending on

the monotonicity of the return function, two types of divide and contraction algorithms are

proposed to efficiently search for voltage intervals containing operating points.
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In practice, designers also need to verify circuits with transistor sizing, PVT variations; or

identify the existence of undesired operating point in complicated circuits (B2P circuits). This

type of problems is called the two dimensional analog verification against undesired operating

points. For this type of verification, a two dimensional vector field method is proposed that

can effectively identify the existence of undesired operating points by visualizing the return

functions in the circuits.

Based on the proposed verification methods used against undesired operating points, an

EDA tool called ”ITV” is developed to identify undesired operating points in analog and

mixed-signal circuits. It can accomplish this on the basis of the break-loop Homotopy method.

It first converts the circuit into a corresponding graph and locates the break point to break

all of the positive feedback loops (PFLs). It then searches the voltage intervals that contain

undesired operating points by use of divide and contraction algorithms or the two dimensional

vector field method. Simulation results show ITV to be effective and efficient in identifying

undesired operating points in a class of commonly used benchmark circuits, including bias

generators, voltage references, temperature sensors, and op-amp circuits.

1.3 Organization of this Dissertation

This dissertation is organized as follows: Chapter 2 provides the proposed low-cost, high-

precision DAC structure and its design methodology. In Chapter 3, design and measurement of

a high-precision DAC based on the proposed structure is presented. Chapter 4 then develops

a high efficient divide and contraction method to verify the existence of undesired operating

points in analog circuits. To accomplish the two dimensional analog verifications, Chapter 5

proposes a two dimensional vector field method. In Chapter 6, an EDA tool called “ITV” is

introduced to implement the proposed methods of identifying the undesired operating points

in analog circuits. Finally, conclusions are presented in Chapter 7.
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CHAPTER 2. LOW-COST, HIGH-PRECISION DAC DESIGN BASED

ON ORDERED ELEMENT MATCHING

2.1 Introduction

Until now, the performance of digital circuits has been constantly enhanced by the scaling of

device dimensions and voltage supply. However, the technology advancement does not benefit

many analog and mixed-signal circuits and in fact it imposes higher requirements on their

performance. The digital-to-analog converter (DAC) is one of the circuits seeing a demand

for increased high accuracy in precision medical, instrumentation, and test and measurement

applications [9]. High-precision 12-bit DACs were once considered to be difficult to implement;

however, 16-bit accuracy is now widely used in high-precision applications. Recently, even a

20-bit, 1-ppm-accurate DAC integrated circuit was proposed to meet the needs of the precision

instrumentation market [10].

Most high-precision DACs rely on accurate resistor arrays to perform data conversion tasks,

so their accuracy is very sensitive to the matching performance of the resistor networks. How-

ever, the integrated-circuit (IC) fabrication technology cannot produce perfectly matched resis-

tors, and with the process scaling, the random mismatch errors increase significantly [11, 12].

Therefore, implementing a high-precision DAC is very costly and depends on many different

techniques.

The most important cost in achieving a high-precision DAC is the resistor area on the

chip. In general, 1-bit linearity enhancement leads to quadrupling of the circuit area [13].

Nevertheless, the maximum allowed area is limited by the available die size as growing numbers

of circuits and systems are integrated into a single chip. Therefore, the implementation of a

high-precision DAC requires high-precision analog processes with high-precision resistors, such
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as silicon-chromium thin-film resistors [10]. Unfortunately, such processes are usually associated

with large transistor feature size and do not scale.

Aside from the resistor area, resistor trimming is often applied to achieve a high-precision

DAC, which also demands high cost. Popular trimming techniques are divided into two main

categories: laser trimming and fuse trimming [14, 15]. Laser trimming employs laser beams

to accurately adjust the resistor parameters at the wafer level, while fuse trimming utilizes a

fuse or anti-fuse for opening or closing the interconnections of a network of resistive elements

intended to minimize mismatch errors. However, trimming techniques usually require high

expenses such as extra layers or more die area for trim pads, and the achieved accuracy is

reduced by temperature and aging effects [14].

High-accuracy calibration circuits are usually employed in high-precision DACs. They de-

crease the mismatch errors by either digital or analog feed-back signals from error-measuring

circuits, such as a high-resolution high-accuracy analog-to-digital converter (ADC) [16, 17] or

DAC [18, 19, 20]. However, the price of implementing those calibration circuits is high. It

requires accurate measurement and complicated feedback circuits, which occupy a large silicon

area, especially for high-precision analog processes whose feature sizes are large. In addition,

specific calibration tests, other than the general DAC tests, are required to implement the

calibration, making the expense of calibration circuits even higher.

Dynamic element matching (DEM) is another popular means of implementing a high-

precision DAC. It dynamically changes the positions of mismatched elements at different times

so that the equivalent component at each position is nearly matched on a time average. Several

popular DEM algorithms are available, such as butterfly randomization [21], individual level

averaging [22], and data weighted averaging [23]. Unlike the static random mismatch compen-

sation techniques, DEM translates mismatch errors into noise. However, the translated noise

is only partially shaped where the in-band residuals could possibly affect the data converters

signal-to-noise ratio (SNR) [24]. Furthermore, the output will be inaccurate at one instant of

time, since DEM guarantees matching only on average, so that its applications are limited to

sigma delta modulators.



www.manaraa.com

8

In summary, existing high-precision DACs require a large die area, high-precision analog

processes, advanced resistor trimming techniques, complicated calibration circuits and addi-

tional test costs. As a result, their cost is high and difficult to reduce, because their implemen-

tation benefits very little from the scaling of digital circuits.

A different approach, called ordered element matching (OEM), was proposed in [25, 13, 26,

27] to implement high-precision DACs. The OEM technique can significantly reduce random

mismatch errors and improve the linearity performance of DACs. More importantly, its im-

plementation relies only on digital circuits and the test method is consistent with traditional

INL tests [27], making it a very promising technique of implementing a low-cost, high-precision

DAC. Based on the OEM technique, a high-precision segmented DAC structure has been in-

troduced in [28] and has achieved accuracy of about 20-bit from the MATLAB simulation.

Nevertheless, its implementation needs additional switch circuits to calibrate the gain errors

between different segments, which requires extra circuits area and may cause leakage problems.

In this dissertation, a low-cost, high-precision DAC structure based on the OEM technique

is presented. It consists of three segments: binary weighted least significant bits (LSB), unary

weighted intermediate significant bits (ISB) and most significant bits (MSB). The optimized

OEM process is applied to the unary weighted ISB and MSB segments. A sub-radix-2 cal-

ibration DAC (CalDAC) is implemented to calibrate the gain errors between ISB and MSB

segments. On the basis of a 130 nm CMOS technique, a high-precision DAC is implemented

to demonstrate the design methodology of the proposed DAC structure.

This chapter is organized as follows. In section 2, the proposed high-precision DAC structure

based on OEM is introduced; section 3 discusses the design of the gain calibration pseudo DAC

included in the proposed DAC structure; section 4 illustrates the OEM calibration process and

implementation; behavioral simulation results are provided in section 5, and conclusions are

stated in section 6.
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2.2 Low-cost, High-precision DAC Structure Based on Ordered Element

Matching

In this section, a low-cost, high-precision DAC structure based on OEM is illustrated. First,

the OEM technology used for reducing the mismatch error is introduced. Then a segmented

high-precision DAC structure is proposed and analyzed. To minimize the gain error between

different segments, a gain calibration DAC (CalDAC) is integrated into the proposed DAC

structure and its design is discussed. The process of applying OEM calibration and its imple-

mentation in digital circuits are then interpreted.

2.2.1 OEM Technology

Fig. 2.1 shows the process of OEM technology. Each rectangle denotes a component with

random mismatch errors in the unary-weighted segment. Component can be a resistance, con-

ductance or any other amplitude whose random mismatch errors are targeted to be minimized

[29], with XAV G as the average amplitude. First, all components are measured and sorted ac-

cording to their amplitudes. The second step is to choose the component with amplitude closest

to XAV G. Third, complementary ordered components are paired, which is called one “folding”.

The original 3-bit unary coded component array is converted into a 2-bit unary-weighted and

1-bit binary-weighted array. In detail, the amplitude of each 2-bit unary weighted array is

nearly twice of the XAV G, and the random variations in the components are reduced. Mis-

match errors consistently diminish after each choosing and folding operation. As shown in Fig.

2.1, if the choosing and single folding operations are repeated until the 3-bit unary weighted

array is converted into a 3-bit binary weighted array, mismatch errors are further reduced. This

process is called “OEM binarization.”
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Figure 2.1: OEM Binarization

2.2.2 High-precision DAC Structure

Fig. 2.2 shows the proposed high-precision DAC structure based on OEM. Although the

design requires an external feedback resistor that creates noise and endpoint errors [10], the

commonly called current-mode R-2R ladder network DAC is selected, for the following reasons.

First, the current-mode structure avoids the resistor non-linearity caused by self-heating, which

is the dominant contributor to resistor non-linearity [30]. In the voltage mode R-2R ladder net-

work, different currents flow through different resistors and the currents vary with the DAC

codes, causing the non-linearity problem. In contrast, all resistors in the same segment of the

current mode R-2R ladder network have the same current, which do not change with the DAC

codes. Thus, self-heating will not cause non-linearity errors in the current-mode structure,

saving the cost of calibrating the resistor non-linearity that is due to self-heating. The second

reason to use the current-mode structure is to minimize the INL error caused by unequal re-
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sistance in switch pairs. In a voltage-mode structure, pairs of PMOS and NMOS switches are

usually used. To minimize the INL error due to the different on-resistance between PMOS and

NMOS, techniques [31] and[10] are needed, requiring high-performance amplifiers and other

circuitry on the chip for high-precision DACs. However, the current-mode structure uses pairs

of NMOS switches, whose on-resistance difference can be minimized by using common-centroid

layout techniques and reasonable switch areas. As a result, the current-mode structure is prefer-

able for a low-cost, high-precision DAC design. Endpoint errors associated with the external

feedback resistor can be minimized by using high-accuracy feedback resistors. Assuming the

high-precision DACs are mostly used in pseudo DC applications, the noise problem caused by

the external feedback resistor is negligible, since the bandwidths of high-precision DACs are

narrow.
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To meet the linearity target of DACs, the area requirements of resistors are often calculated

by the resistors matching level, as shown in the following subsection. The matching level of

the resistance of a resistor is the same as its corresponding conductance, as shown in

G =
1

R
⇒ ∆G =

−∆R

R2
⇒ ∆G

G
= −∆R

R
(2.1)

where resistance R is the resistance of a resistor and G is its corresponding conductance. Yet,

the mismatching level of resistors is easily found in a process design manual instead of their

corresponding conductance mismatching level. As a result, resistors in ISB and MSB segments

are marked RISB and RMSB in Fig. 2.2. However, because the proposed DAC is a current

output DAC, its linearity performance is determined by the output current relationship with

the DAC input codes. In the unary weighted segments, the resulting output current of each

resistor is determined by its conductance. For instance, the output current generated by the

ith MSB resistor is Iout(i) = VREF /RMSB(i) = VREF ×GMSB(i). As a result, OEM binarization

should be applied to conductances rather than resistances of ISB and MSB segments to improve

their linearity performance.

The proposed DAC structure consists of three segments: the binary weighted LSB, unary

weighted ISB and MSB. Compared with the traditional two-segment DAC structure [10], the

proposed DAC structure achieves higher linearity performance by application of OEM bina-

rization to both the ISB and MSB segments. A unary weighted array with more than 7 bits

requires digital circuits that are too complicated for OEM binarization to be applied to. OEM

binarization cannot be utilized in binary weighted array, and LSB segment accomplishes its

targeted accuracy through the resistor’s intrinsic matching. For a 16 ∼ 20 bit high-precision

two-segment DAC structure, the intrinsic matching of the resistors in the binary weighted LSB

should be above the 9 to 13 bit level, assuming the MSB segment is 7-bit and calibrated by

OEM binarization. However, resistors with a 9 to 13 bit matching level require large areas if

high-precision analog processes are not being used. Thus another unary weighted ISB segment

is needed in high-precision DAC design. By applying OEM binarization to both the ISB and

MSB segments, the matching level of resistors in the two segments can be significantly improved

[28]. Moreover, the requirement of intrinsic matching level of resistors in the LSB segment is
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greatly relaxed, thereby reducing the area of LSB resistors. For example, a 20-bit DAC with

5-bit ISB and 7-bit MSB requires only 8-bit matching resistors in the LSB segment, which

significantly decreases the area of the LSB segment and the total area of the DAC. However,

adding the ISB segment into the DAC produces a gain error problem between the ISB and

MSB segments, which can be minimized by a gain calibration method discussed in the next

section.

2.2.3 Segmentation Choices

For the proposed DAC structures, the segmentation choice should be carefully considered.

First, resistors in different segments do not have the same effect on DAC linearity performance.

In INL, the contribution of LSB resistor non-linearity could be approximated as

INL(RLSB) = 2nlsb−0.5 × σRLSB
(2.2)

where σRLSB
is the standard deviation of the LSB resistor random mismatch error, and nlsb is

the number of LSB segment bits. Although the current-mode structure is applied in the design,

the variation of the output current depends mainly on the difference between resistors.

The contribution of the ISB and MSB resistors non-linearity could also be separately esti-

mated as

INL(RISB) = 2nlsb+nisb/2+0.5 × σRISB
(2.3)

INL(RMSB) = 2nlsb+nisb+nmsb/2+0.5 × σRMSB
(2.4)

where σRISB
is the standard deviation of the ISB resistor random mismatch error, σRMSB

is

the standard deviation of the MSB resistor random mismatch error, nisb is the number of ISB

bits and nmsb is the number of MSB bits.

After applying the OEM process as described in sub-section 1.2.2, the resulting INL caused

by random mismatch errors in ISB/MSB segments is modeled as

INL
′

(RISB) = 2nlsb+nisb/2+0.5−X1 × σRISB
(2.5)

INL
′

(RMSB) = 2nlsb+nisb+nmsb/2+0.5−X2 × σRMSB
(2.6)
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Table 2.1: OEM Reduction Factor

Bit number 5 6 7

x1 3 4 4.5

x2 (w/20% outlier) 4.5 5.5 7

where X1 and X2 are called OEM INL reduction factors. For the MSB segment, an outlier

elimination technique is used to further improve the matching performance [13], and about

20% being the best percentage of outlier number. The OEM INL reduction factors vary with

process and resistor areas, but their approximate values can be obtained as shown in TABLE

2.1.

The required area of resistors is estimated from the standard deviation of their mismatch

error

Areq = Au(
σu
σreq

)2 (2.7)

where σu is the standard deviation of unit resistor, σreq is the required standard deviation of

the mismatch errors, and Au is the area of unit resistor. From equations (2.2) (2.5) (2.6) (2.7),

the total area can be estimated as follows:

Atotal =(Au(
σu

log2(INLMSB/2nlsb+nisb+nmsb/2+0.5−X2)
)2 +ADigital +ASWMSB

)

× (2nmsb − 1)× 1.2 + (Au(
σu

log2(INLISB/2nlsb+nisb/2+0.5−X1)
)2 +ADigital +ASWISB

)

× (2nisb − 1) + (Au(
σu

log2(INLISB/2nlsb−0.5)
)2 +ASWLSB

)× (3nlsb+ 1) (2.8)

where ADigital is the OEM digital circuit for each resistor (illustrated in section 4), ASWMSB
,

ASWISB
and ASWLSB

are the single switch areas for the MSB, ISB and LSB segments, respec-

tively.

Equation (2.8) shows more unary weighted bits (more bits in the ISB and MSB segments)

the linearity performance further improves, decreasing the area of resistors. However, with more

unary-weighted bits, more digital circuits are required to implement OEM. Thus a trade-off

exists between the digital circuit and the resistor area when segmentation is performed.
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Another important consideration related to segmentation is power consumption. The power

consumption of a DAC is

P = V 2
ref/Routput (2.9)

where Routput = Rmsb/2
nmsb is the output impedance of the DAC. Thus, the unit resistor

value and the number of bits in the MSB segment are limited by power consumption. In

most general analog processes, resistors with higher matching performance usually have lower

resistance density. The large Routput needed to reduce power consumption may cause large area

requirements for resistors with high matching performance but low resistance density. On the

other hand, with one more bit in the MSB segment, the required resistance of the MSB resistor

doubles for the same power consumption. Therefore, the number of bits in the MSB segment

should be carefully selected, not only on the basis of the matching level to be achieved, but

also on the basis of power consumption limitations.

2.3 Gain Calibration Pseudo DAC Design

2.3.1 Gain Error between Different Segments

Aside from mismatch errors in each segment, an important non-linearity error in the seg-

mented DAC is the gain error between different segments. For example, in an ideal matched

three-segment DAC, the following relation exists between the ISB and MSB segments:

VrefGILSB(2N−nmsb) = VrefGMSB(1) (2.10)

whereN is the total bits of the DAC, nmsb is the bits of MSB segment, GMSB(1) = (RMSB(1))
−1

is the conductance of the lowest bit of MSB segment, and GILSB(2N−Nmsb) is the total con-

ductance of the LSB and ISB segments. The gain error between the ISB segment and the MSB

segment from (2.10) generates the following output current:

∆IGain = Vref (GILSB(2N−nmsb)−GMSB(1)) = Vref∆G. (2.11)

Since the lowest bit of MSB stands for 2N−nmsb LSB of the whole DAC, the following equation

is required to make the total INL error less than 1 LSB:

|∆IGain| <
IMSB(1)

2N−nmsb
. (2.12)
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Similar analysis is applied to the gain error between the ISB and LSB segments. Gain error

between different segments must be minimized in a high-precision DAC.

In the structure proposed in [28], gain calibration is achieved by changing different bridge

resistors, and both the gain error between the LSB and ISB segments and the gain error between

ISB and MSB segments are calibrated. Nevertheless, its implementation needs additional switch

circuits to calibrate the gain errors between different segments, causing additional circuit area

and potential leakage problems. Moreover, the gain error between the LSB and ISB segments

can be minimized by increasing the area of the Rbr1, and the gain error between the ISB and

MSB segments is the dominant gain error. As a result, in the proposed DAC structure shown

in Fig. 2.2, no additional switches in the unary weighted segments to calibrate the gain errors

between different segments are used. Instead, the gain error between LSB and ISB is minimized

by enlarging the area of the Rbr1, and a calibration pseudo DAC (CalDAC) is inserted between

the ISB and MSB segments for calibrating the gain errors.

2.3.2 Gain Calibration DAC

The results of (2.11) and (2.12) are

|∆G| = |GILSB(2N−nmsb)−GMSB(1)| < GMSB(1)

2N−nmsb
, (2.13)

creating,

GMSB(1)(1− 1

2N−nmsb
) < GILSB(2N−nmsb) < GMSB(1)(1 +

1

2N−nmsb
)⇒

− 1

2N−nmsb + 1
RMSB(1) < RILSB(2N−nmsb)−RMSB(1) <

1

2N−nmsb − 1
RMSB(1) (2.14)

where RILSB(2N−nmsb) = (GILSB(2N−nmsb))−1 and RMSB(1) = (GMSB(1))−1.

Assuming 2N−nmsb >> 1, (2.14) is simplified to

|RILSB(2N−nmsb)−RMSB(1)| = |∆R| < 1

2N−nmsb
RMSB(1) (2.15)

From (2.15), the gain error is reduced to meet the DAC accuracy requirement if |∆R| is

calibrated to the required level.
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Figure 2.3: (a) First Simplified CalDAC Structure; (b) Second Simplified CalDAC Structure.

Fig. 2.3 shows a comparison of two types of pseudo calibration DAC structures. In the

first simplified pseudo calibration DAC structure, shown in Fig. 2.3(a), RavISB is the average

value of all the resistors and switch on-resistances in the ISB segment, nisb is the bits of the

ISB segment, Gcal is the conductance of the CalDAC, and RMSB(1) is the lowest bit resistance

of the MSB segment. In this structure,

RILSB(2N−nmsb) = RBR3Gcal2
−nisbRavISB + 2−nisbRavISB +RBR3

= RBR3Gcal2
−nisbRavISB +RT1 (2.16)

where RT1 = 2−nisbRavISB +RBR3.

By setting RILSB(2N−nmsb)|nom = RT1, the gain error can be reduced to our required

accuracy by tuning Gcal to minimize ∆R; or we can make

RILSB(2N−nmsb)|nom = RBR3Gcal|nom2−nisbRavISB +RT1 = RMSB(1) (2.17)

where Gcal|nom is the nominal value of the Gcal. Both cases require RT1 < RMSB(1).

The second simplified CalDAC structure is shown in Fig. 2.3(b); its RILSB(2N−nmsb) is

calculated as

RILSB(2N−nmsb) =RBR3Gcal(2
−nisbRavISB +RBR2) + 2−nisbRavISB +RBR2 +RBR3

=RBR3Gcal(2
−nisbRavISB +RBR2) +RT2. (2.18)
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where RT2 = 2−nisbRavISB +RBR2 +RBR3. As is the case for the first structure, the gain error

can be minimized by Gcal.

From (2.16) and (2.18), the ∆R is calibrated to the required accuracy by tuning Gcal,

thereby reducing the gain errors in both CalDAC structures. However, the required calibration

ranges for these two CalDAC structures differ greatly.

Assuming the standard deviation of RMSB(1) variation is σRMSB(1), the largest variation

of RMSB(1) can be estimated as 5σRMSB(1) = ∆RS . With assignment of an area similar to

RMSB(1), the largest variation of RT1 in the first structure and RT2 in the proposed structure

are the same as ∆RS . The calibration range of CalDAC is analyzed as shown in Fig.2.4.

Meeting the condition RT1 < RMSB(1) and RT2 < RMSB(1) in the two structures respectively

requires that

RMSB(1)|nom −RT1/2|nom ≥ 2∆RS . (2.19)

where RMSB(1)|nom is the nominal value of RMSB(1), and RT1/2|nom is the nominal value of

RT1 or RT2. Conditions (2.15) and (2.19) require the tuning range of GCAL to calibrate the

range

∆RCAL ≥ 4∆RS . (2.20)

Together with (2.16) and (2.18), the calibration range for the first CalDAC structure is:

∆GCAL1 ≥
4∆RS

RBR32−nisbRavISB
, (2.21)

and the calibration range for the second CalDAC is:

∆GCAL2 ≥
4∆RS

RBR3(2−nisbRavISB +RBR2)
. (2.22)

When (2.21) is compared with (2.22), the calibration range ∆GCAL2 < ∆GCAL1, which

results in a smaller CalDAC design; this is why the calibration DAC structure in Fig. 2.3(b) is

used in the proposed DAC structure.

In addition to the calibration range, the calibration step of the CalDAC, i.e., the bits of

CalDAC, should also be taken into consideration. Assuming ∆RS = 1
2Nk

RMSB(1), to meet
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Figure 2.4: CalDAC Range

(2.15), requires the number of codes in the CalDAC

NG ≥
4∆RS

1
2N−nmsbRMSB(1)

= 2N−nmsb−Nk , (2.23)

and thus requires at least N−nmsb−Nk bits CalDAC to calibrate the gain error to the expected

accuracy. In practice, extra bits should be added to compensate for the resistor tolerance and

variations of processes and temperature.

2.3.3 Implementation of Gain Calibration

In sub-section 1.3.2, gain calibration was discussed; however, its implementation needs to

be further investigated. From (2.22) and (2.23), the required calibration range and number of

bits can be calculated, respectively. However, there is no linearity requirement for the CalDAC,

because it works as a pseudo DAC and its input code is fixed after the best gain calibration.

Thus, a sufficiently large calibration range with enough number of calibration steps are enough

for implementation the required CalDAC. The most efficient way to implement the CalDAC is

to employ the sub-radix-2 DAC, as shown in Fig. 2.5. The output of the CalDAC is connected

to node VBR, as shown in Fig. 2.2.
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Figure 2.5: CalDAC Implemented As a Sub-radix-2 DAC
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Figure 2.6: CalDAC Ratio

In CalDAC, each branch has a resistor and a switch. By connecting the switch to ground

(Gnd), the corresponding bit contributes a conductance Ci = 1
Ri

. The ratio of the resistors

between adjacent bits is αi < 2, e.g. R2 = α1R1. The ratio αi between different bits is

determined by the variations of resistance, as shown in Fig. 2.6. To make the ratio between

adjacent bits less than two, the following relationship can be used:

αiRn−1 + 5σn < 2× (Rn−1 − 5σn−1)⇒ αi < 2− (5σn + 10σn−1)/Rn−1 (2.24)

where Rn−1 is resistance of n− 1 bit of CalDAC, αn−1 is the resistance between Rn and Rn−1,

σn and σn−1 are the standard deviation of resistance of n and n−1 bits of CalDAC, respectively.
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Figure 2.7: The Gain Calibration Process

The gain calibration process is shown in Fig. 2.7. All the LSB and ISB resistors are

connected to Iout and MSB resistors to Gnd. The CalDAC codes are swept from the smallest

to the largest, and the total conductances of LSB and ISB segments for each CalDAC code

i are obtained as GILSB(2N−nmsb)CALcode(i). The best CalDAC code which has the minimal

value of |GILSB(2N−nmsb)CALcode(i)−GMSB(1)| among the different CalDAC codes, is selected.

Therefore, the gain error can be calibrated by the CalDAC.

The gain calibration range (∆GCAL) of the CalDAC is determined by (2.22). Assuming that

∆RS , 2−nisbRavISB are defined from the segmentation choice, ∆GCAL is modified by changing

the RBR2 and RBR3. The number of bits for CalDAC (ncsb) is determined by (2.23). On this

basis, the area of the CalDAC is analyzed as the following:

Without loss of generosity, we assume ncsb is a odd number, and the middle bit of the

CalDAC is bit (ncsb+1)/2. To simplify the analysis, resistance ratios between adjacent bits αi

are the same and equal to α. Since CalDAC works as a pseudo DAC and there is no linearity

requirement for the CalDAC, all resistors in the CalDAC can have the minimum width. As a

result, the area of each bit depends on resistance density R�, ∆GCAL and ncsb. For example,
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Table 2.2: Area of a 9-bit CalDAC

Bit number Bit-9 Bit-8 Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1

Resistance

ratio
α4 α3 α2 α 1 1/α 1/α2 1/α3 1/α4

Area

ratio
α4 α3 α2 α 1 4/α 16/α2 64/α3 256/α4

the resistance of the middle bit is

R(ncsb+1)/2 =
α(ncsb+1)/2

∆G
, (2.25)

so its area requirement is calculated as

A(ncsb+1)/2 =
α(ncsb+1)/2

∆GR�
. (2.26)

The resistance of bit (ncsb + 1)/2 + 1 should be αR(ncsb+1)/2, which can be implemented by

combing two αR(ncsb+1)/2/2 resistors series. Similarly, bit (ncsb+ 1)/2 + 1 is composed of four

α2R(ncsb+1)/2/4 resistors series, etc. The resistance of bit (ncsb+1)/2−1 is implemented as two

2R(ncsb+1)/2/α resistors in parallel, and bit (ncsb+1)/2−2 implemented as four 4R(ncsb+1)/2/α
2

resistors in parallel. For example, the resistor and area ratio between different bits in a 9-bit

CalDAC is summarized in TABLE 2.2. From (2.26), the total area of the CalDAC is calculated

as

ACalDAC = [
1− α5

1− α
+

4(α4 − 256)

α5 − 4α4
]
α(ncsb+1)/2

∆GR�
. (2.27)

Assuming that α = 1.8, ncsb = 9, and ∆G = 1mS, changing the ratio between RBR2 and RBR3

from (2.22) results in an ACalDAC of about 1.226E6/R�. In a general analog processes, the

R� of the poly resistor is 1000 ∼ 2000Ω/�. Thus the ACalDAC for a nine bit CalDAC is only

613 ∼ 1226R�, which is small enough to be regarded as negligible compared with the area of

the resistor array in the DAC.
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2.4 OEM Calibration

2.4.1 OEM Calibration

OEM calibration is applied to the resistances of the ISB and MSB segments in [28]. The

calibration can be made more accurate by applying OEM calibration to the conductances of

the ISB and MSB segments, because the proposed structure is that of a current output DAC.

Moreover, since the CalDAC is employed to calibrate the gain error, the OEM calibration

applied to the proposed DAC after fabrication is greatly simplified by following the steps

shown in Fig.2.8.

Step 1 applies OEM binarization to the MSB segment. In this step, all resistors in LSB and

ISB segments are switched to Gnd and all switches in the CalDAC are opened. Resistors in the

MSB segment are sequentially switched to Iout, and the corresponding values of conductance

GMSB(i) = 1/RMSB(i) are obtained one by one. From the measurement results of GMSB(i),

OEM binarization can be applied to MSB conductances.

Step 2 is similar to Step 1 but applies the OEM binarization to the ISB segment. In

this step, all resistors in LSB and MSB segments are switched to Gnd and all switches in

the CalDAC are opened. Resistors in the ISB segment are sequentially switched to Iout, and

the corresponding conductance values GISB(i) = 1/RISB(i) are obtained one by one. OEM

binarization is then applied to the ISB conductances.
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Figure 2.8: OEM Calibration Process: (a) Application of OEM Binarization to the MSB

Segment; (b) Application of OEM Binarization to the ISB Segment
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Table 2.3: Digital Coding for OEM Binarization (7-bit)

Address Code Number of components Digital input

001 1 D[0]

010 2 D[1]

011 4 D[2]

100 8 D[3]

101 16 D[4]

110 32 D[5]

111 64 D[6]

2.4.2 Digital Circuits to Implement OEM Calibration

To implement OEM binarization, each resistor in a N-bit unary weighted segment needs to

be connected to one of the N-bit lines. This requires an N-to-1 digital mux and a log2N bit

number of memories cells to store the mux address code for each element, similar to [26].

The calibration circuit for a 7-bit unary weighted segment is shown in Fig.2.9, where the

OEM binarization is realized by the 3-bit memory cells and 7-bit muxes. The memory cells,

which are arranged as serial-in parallel-out connections, can be either registers or one time pro-

gramming (OTP) cells, depending on the application. TABLE 2.3 illustrates the corresponding

address code and number of elements for different bit lines during the normal conversion phase.

For example, if 010 is assigned to two resistors, D[1] will be selected to control them. With

these arrangements, the 7-bit unary weighted segment operates in a binary weighted manner.
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Figure 2.9: OEM Calibration Circuits

2.5 Behavioral Simulation Results

A MATLAB model of a 20-bit R-2R DAC with 8-5-7 segmentation was built on the basis

of the proposed structure to verify its matching performance. We chose Rmsb = 2Rmid, Rlsb =

Rmid and the same width for all resistors. To compare the model with state of the art models,

the R-2R DAC model in [10] was also included, because it is the first and only one existing

20-bit R-2R DAC reported in the literature. It has a two-segment structure with 14-6 segments

and could correct up to ±16 LSBs of INL by CALDAC.

First, the unit LSB in n bit level (LSBn) was defined as

LSBn = FS/2n (2.28)

where FS is the full scale of the DAC. If the matching level is the n bit, the standard deviation

of the mismatch error σ ≈ 1/2n.
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Figure 2.10: (a) INL Plot of the Original 13-bit LSB and ISB Segments; (b) DNL Plot of the

Original 13-bit LSB and ISB Segments

Fig. 2.10 shows the INL and DNL of a 13 bit DAC, which consists of only the 8 bit LSB

and 5 bit ISB segments. The intrinsic matching level of the unit resistors in the ISB segment

is about 8 bit, and the unit 2R resistor in the LSB segment has about 8 bit matching accuracy.

As shown in Fig. 2.10 (a), the INL of the 13 bit DAC is about 1.2 LSB and the DNL is 1.1

LSB. It should be noted the LSB used here is in the 13 bit level. After OEM binarization is

applied to the ISB segment, the INL was improved to about 0.18 LSB and the DNL improved

to about 0.19 LSB, as shown in Fig. 2.11.
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Figure 2.11: (a) INL Plot of the 13-bit LSB and ISB Segments After Applying OEM Binariza-

tion to the ISB Segment; (b) DNL Plot of the 13-bit LSB and ISB Segments After Applying

OEM Binarization to the ISB Segment

To implement a 20-bit DAC, a 7-bit MSB segment was added, and the matching level of

the unit resistor in MSB segment was 11 bit. If there was no gain error between the ISB and

MSB segments, the linearity performance of the 20-bit DAC was dominated by the matching

performance of the MSB segment. As shown in Fig. 2.12, the INL of the 20-bit DAC was about

45 LSB and DNL was 7 LSB. After applying OEM binarization to the MSB segment, the INL

decreased to a 0.45 LSB and the DNL decreased to 0.46 LSB, as shown in Fig. 2.13. Results

showed OEM binarization significantly reduced the mismatch error and improved linearity

performance.
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Figure 2.12: (a) INL Plot of the 20-bit DAC After Adding the MSB Segment Without Gain

Error; (b) DNL Plot of the 20-bit DAC After Adding the MSB Segment Without Gain Error

Figure 2.13: (a) INL Plot of the 20-bit DAC After Applying OEM Binarization to the MSB Seg-

ment Without Gain Error; (b) DNL Plot of the 20-bit DAC After Applying OEM Binarization

to the MSB Segment Without Gain Error

However, there is another important source of nonlinearity error: the gain error between

the ISB and MSB segments. In this model, the bridge resistor RBR2 and RBR3 was matched

to the 11 bit level. Without CalDAC, there were two types of gain error. The first is
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Figure 2.14: (a) INL Plot of the 20-bit DAC After Applying OEM Binarization to the MSB

Segment With Positive Gain Error; (b) DNL Plot of the 20-bit DAC After Applying OEM

Binarization to the MSB Segment With Positive Gain Error

GILSB(2N−nmsb) < GMSB(1) and is called the positive gain error, as shown in Fig. 2.14.

The negative gain error is that with GILSB(2N−nmsb) > GMSB(1). If positive gain error ex-

isted, the INL and DNL plot after OEM binarization is applied to the MSB segment is shown

in Fig. 2.14, and results for a negative gain error case are shown in Fig. 2.15. In both cases,

the gain error dominated the INL and DNL errors. A 9-bit CalDAC was modeled, and after

the gain calibration is applied to the gain error shown in Fig. 2.15, the INL and DNL plots are

as shown in Fig. 2.16. After gain calibration, the INL dropped from about 14.9 LSB to 0.22

LSB and the DNL was reduced from 12.9 LSB to 0.21 LSB.
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Figure 2.15: (a) INL Plot of the 20-bit DAC After Applying OEM Binarization to the MSB

Segment With Negative Gain Error; (b) DNL Plot of the 20-bit DAC After Applying OEM

Binarization to the MSB Segment With Negative Gain Error

Figure 2.16: (a) INL Plot of the 20-bit DAC After Gain Calibration; (b) DNL Plot of the 20-bit

DAC After Gain Calibration

Fig.2.17 shows DNL and INL distributions of 1,000 randomly generated 20-bit DACs with

the proposed structure, with a standard deviation σRmsb
= 4.7E − 4. After OEM operation,

the DNL was reduced from 43.3 LSB to 0.75 LSB and INL decreased from 69.9 LSB to 0.59

LSB! Results showed that the linearity performance improvement of the proposed structure
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is much higher than that of [10].

Figure 2.17: DNL and INL Distribution Comparison of 1,000 Randomly Generated Resistor

Arrays in a 20-bit R-2R DAC With σRmsb
= 4.7e− 4

Table 2.4: Simulation Results of Area Comparison

Required Performance DAC from [10] Proposed DAC

INL < 1LSB 4.632e6 0.636e5

The resistor area requirement of two types of 20-bit R-2R DAC are compared in Table.2.4.

Yield estimations by the Monte Carlo simulation showed the required resistors standard devi-

ation of each type of DAC model. The area calculation was based on assuming σ2 = k
Area and

k = 1e− 4. To achieve yield > 99.7% with INL < 1 LSB, TABLE 2.4 shows the required total

resistor area of the proposed DAC is less than 1/72 of DAC calibrated by CALDAC in [10].

Thus the proposed DAC dramatically improved linearity performance and decreased the total

resistor area.
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2.6 Conclusion

Until now, performance of digital circuits was constantly enhanced by the scaling of the

device dimensions and of the voltage supply. However, such technology advances do not benefit

many analog and mixed-signal circuits, and in fact imposes higher requirements on their per-

formance. The digital-to-analog converter (DAC) is one of the circuits for which high-accuracy

requirements are increasing in precision medical, instrumentation, and test and measurement

applications. Existing high-precision DACs require large die areas, high-precision analog pro-

cesses, advanced resistor trimming techniques, complicated calibration circuits and additional

test costs. As a result, costs are high and difficult to reduce because implementation benefits

very little from the scaling of digital circuits. In this chapter, a low-cost, high-precision DAC

structure based on OEM theory was proposed and its design methodology discussed. It achieves

high matching accuracy by applying OEM calibration to the resistors in unary weighted seg-

ments and calibrating the gain error between different segments by calibration DAC (CalDAC).

A MATLAB behavioral model was created, and the simulation results show that the proposed

DAC structure can achieve the same accuracy as that of state-of-the-art model, in a much

smaller resistor area. Moreover, with the scaling of digital devices, its advantage could be

constantly enhanced.
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CHAPTER 3. DESIGN AND MEASUREMENT OF A

HIGH-PRECISION DAC IN 130 NM CMOS TECHNOLOGY

3.1 Introduction

To verify the advantages of the proposed DAC structure, we designed a high-precision

DAC in the 130 nm Global Foundry (GF) CMOS fabrication process. This process features

high-density 130 nm CMOS logic intended for RF and analog and mixed signal applications.

However, it is not suitable for designing high-precision DACs, as it is not a high-precision

analog process.

Most high-precision DACs rely on precision resistor arrays to perform data conversion tasks,

so their accuracy is very sensitive to the matching performance of the resistor networks. Never-

theless, high-precision resistors are not part of the 130 nm GF process. The most accurate type

of resistor in the process is the thin-film metal resistor, which requires a large resistor area and

considerable space to achieve moderate matching performance (0.1%). Moreover, the thin-film

metal resistor has very low sheet resistance, causing high power consumption and large switch

transistor size.

Resistor trimming is often applied to achieve a high-precision DAC with improved accuracy.

However, no resistor trimming techniques were available to us in this process. As discussed in

last chapter, trimming techniques usually involve high expense, such as the expenses for extra

layers or more die area for trim-pads, and the achieved accuracy is reduced by temperature

and aging effects [14].

The high-accuracy calibration circuits usually employed in high-precision DACs decrease

the mismatch errors by either digital or analog feedback signals from error measuring circuits,

such as a high-resolution high-accuracy analog-to-digital converter (ADC) [16, 17] or DAC
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[18, 19, 20]. However, accurate measurement and complicated feedback circuits are required,

which may occupies a large silicon area using the 130 nm GF process, as it is not intended for

use in high-precision analog design.

Therefore, this fabrication process is not intended for use in high-precision DAC designs.

However, this process features high-density CMOS digital logic, and is a typical process that

can be constantly enhanced by the scaling of the device dimensions and the voltage supply. As

a result, implementation of a high-precision DAC in such a process has importance as a means

of reducing the costs of high-precision DAC design.

In this chapter, a high-precision DAC based on the proposed structure is designed in the

GF 130 nm process. The design process is described in detail from a behavioral model to a

schematic and layout design. The test scheme and PCB board designs are also illustrated.

Simulation and measurement results show that the proposed DAC structure can greatly reduce

the area requirement and make it possible to implement a high-precision DAC without use of

a high-precision analog process.

This chapter is organized as follows: In section 2, a high-precision DAC design in GF 130

nm process is introduced; section 3 discusses the test scheme and test board design; section 4

illustrates measurement results, and conclusions are stated in section 5.

3.2 DAC Design in GF 130 nm Process

We implemented our design using the GF 130 nm process from a behavioral model to a

schematic and layout design. These will be illustrated in detail in this section.

3.2.1 Behavioral Model and Schematic Design

On the basis of the proposed DAC structure and its related design methodology, both a

MATLAB model and a schematic design of a 21-bit R-2R DAC were built in GF 130 nm CMOS

process.
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3.2.1.1 Resistor Array Design and Segmentation Choice

The type of resistor used in the resistor array was chosen on the basis of the fabrication

process. In the GF 130 nm process, the only available precision resistor is the thin-film metal

resistor. Although its resistance density is low, its matching performance is at least 3 times

better than that of any other resistor in this process, which means that it requires less area

than other type of resistors in this process to achieve the same matching performance. As a

result, the thin-film metal resistor was used in our resistor array.

After the resistor type was chosen, segmentation was decided upon, based on the design

methodology discussed in the previous chapter. Since the segmentation is mainly dependent on

the ratio between the resistor area and the OEM digital area, the OEM digital circuit area was

estimated first. Based on the estimation, the total area using equation (2.8) can be calculated

and the best segmentation choice to achieve minimum area can be obtained by using MATLAB

model. The limitation of power consumption should also be taken into consideration. In our

design, the target of power consumption is about 100 mW .

For this GF 130 nm process, the segmentation was chosen as nmsb = 7, nisb = 5 and

nlsb = 9. The MSB resistor value was chosen as 16KΩ, ISB resistor was 8KΩ, 2R = 8KΩ and

R = 4KΩ in the LSB segment.

3.2.1.2 CalDAC Design

To calibrate gain error between different segments, the CalDAC was designed. As discussed

in the previous chapter, the CalDAC is designed as a sub-radix-2 DAC and does not require

high linearity performance, although a sufficiently large calibrating range is necessary. Thus,

high resistor density is needed for the CalDAC design. The poly resistors were applied to the

CalDAC since their resistance density is large.

From the segmentation decided on in the previous step, the calibration range and number

of bits can be calculated by (2.22) and (2.23). The standard deviation of poly resistance was

obtained by performing Monte Carlo simulations. The resistor ratio between the different bits
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Table 3.1: The Calibration DAC (CalDAC) Design

Bits 0 1 2 3 4 5 6 7 8

Resistor value

(KΩ)
1330.7 723.6 390.9 210.0 112.3 57.8 31.7 17.2 9.7

Resistor width

(µm)
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Resistor length

(µm)
13.2 14.3 15.4 16.5 17.6 18.7 19.8 11 6.6

Resistor multiplier 64 32 16 8 4 2 1 1 1

Resistor ratio 768 416 224 120 64 34 18 10 6

in CalDAC was then calculated using (2.24). The total number of calibration bits selected was

9, and the related resistors for each bit are shown in TABLE 3.1.

3.2.1.3 Switch Design

Unequal resistance of the PMOS and NMOS switch pairs causes important INL errors in

the voltage mode DAC [10]; complicated force and sense techniques are required to reduce the

INL caused by switch resistance. In the proposed DAC structure, pairs of NMOS switches are

used to connect each resistor to either Iout or Gnd, since Iout is forced to Gnd by the output

buffer. Because of this, on-resistance mismatches between the switches in the switch pairs are

greatly reduced. To further reduce INL errors caused by switch resistance, switch sizes are

increased to minimize its on-resistance, especially if resistance of the resistor is not large. As a

general rule, in the resistor array, if one resistor with resistance equal to R and its weight is n

LSB, on-resistance of the switch connecting to its resistor should be less than R/2n. Moreover,

in the LSB segment, since each bit has a different weight, it is important to ratio the size of the

switches according to their weights, as shown in TABLE 3.2. In the lower-weight bits, different

numbers of fingers can be used to ratio switches of different bits, but in the higher-weight bits,

applying different multipliers together with a common centroid layout is necessary to achieve

more accurate ratios between different bits.
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Table 3.2: The Switch Design

Bits
LSB

Bit-1

LSB

Bit-2

LSB

Bit-3

LSB

Bit-4

LSB

Bit-5

LSB

Bit-6

LSB

Bit-7

LSB

Bit-8

LSB

Bit-9

ISB

Bits

MSB

Bits

W(µm) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

L(µm) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Number

of Fingers
1 2 4 8 16 16 16 16 16 16 16

Multiplier 1 1 1 1 1 2 4 8 16 32 16

3.2.1.4 Digital Circuits Design

To implement the OEM calibration, digital circuits should be added into the DAC. As

discussed in previous chapter, the series-in parallel-out memory cells can be implemented as

the shift registers, as no one time programming (OTP) cells are available in the GF 130 nm

process. The block diagram of the DAC is shown in Fig. 3.1. For the ISB and MSB, shift

registers with mux circuits are needed, where the ADRI and ISBCLK are the data and clock

signal for shift registers for the ISB segment. The ISBO signals are output signals used to

verify the functions of the shift registers. The situation is similar for the ADRM , MSBCLK

and MSBO signals. The D[0 : 21] is the input digital code and Dc[0 : 8] is the input code for

the CalDAC.
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Figure 3.1: Block Diagram of the DAC



www.manaraa.com

40

Table 3.3: MATLAB and Schematic Simulation Result

Total

INL

LSB

INL

ISB

INL

MSB

INL

Total

DNL

LSB

DNL

ISB

DNL

MSB

DNL

MATLAB

Simulation (LSB)
0.11 0.025 0.005 0.044 0.065 0.029 0.005 0.071

Schematic

Simulation (LSB)
0.16 0.036 0.005 0.095 0.087 0.036 0.005 0.071

3.2.1.5 Simulation Results

To verify the proposed DAC structure, both a MATLAB model and a schematic design of

a 21-bit R-2R DAC were built based on the GF 130 nm CMOS process.

In the MATLAB model, all the resistance parameters in the DAC are modeled as random

variables, which include the variation of the resistor array, the on resistance of the switches

and the CalDAC. The standard deviation of the MSB resistor is σRMSB
= 5 × 10−4. 10,000

randomly generated 21-bit DACs with the proposed structure were simulated, and the worst-

case results are shown in TABLE 3.3. The total INL of the simulation results is only 0.11

LSB and the total DNL is only 0.065 LSB after OEM calibration. The INL and DNL of each

segment are also shown in TABLE 3.3.

From the MATLAB simulation results, the resistance parameters in the DAC for the worst-

case linearity performance can be obtained. Those parameters are applied to the schematic

as variable components of the circuits. For example, the variations of the unit resistors in the

MSB segment can be modeled as resistors with positive or negative resistance in series with

the nominal MSB resistors. With addition of these variable components to the DAC circuits,

the variations of the resistance parameters in DAC can be modeled. The schematic simulation

results of INL and DNL simulation are shown in TABLE 3.3. The results are similar to those

obtained with the MATLAB simulation, with total INL=0.16 LSB and total DNL = 0.087

LSB.
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Figure 3.2: MATLAB and Schematic DNL Simulation Results

Figure 3.3: MATLAB and Schematic INL Simulation Results

The plot of INL and DNL for the MATLAB and schematic simulations are shown in Fig.

3.2 and Fig. 3.3, respectively. The results of both are similar, and the slightly difference

between the two is due to the leakage and parasitic effect, which are ignored in the MATLAB

simulations.
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3.2.2 Layout Design

Such a large design requires a great deal of layout work, the key points of which are sum-

marized in this section.

3.2.2.1 Top Level Layout

The top level layout is shown in Fig. 3.4; the total area included in the pads is about

2600µm × 4000µm. The total area is dominated by the resistor arrays, especially the MSB

segment. By employing poly resistors, the CalDAC can be made to occupy a much smaller

area. To implement the OEM calibration, digital circuits are integrated to the MSB and ISB

segments. To balance the digital signals, digital buffer trees are also designed for the OEM

digital circuits. Moreover, a large switch area is adopted to minimize on-resistances of the

switches. However, the total area of the digital circuits and switches to implement the OEM

calibration is still very small compared with the resistor area, as shown in Fig. 3.4.
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Figure 3.4: The Top Level Layout

Since our DAC design shares the same chip with other designs, only three sides of the chips

are utilized for placement of the pins. The whole chip’s size is 4000µm× 4000µm, and the die

photograph is shown in Fig.3.5. The part in the blue block is our DAC circuit.
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Figure 3.5: The Die Photograph of the Whole Chip

3.2.2.2 Common Centroid Layout for Resistor Array

The common centroid layout technique is often applied to minimize the gradient errors in

a layout design [32]. Typically, a nth order layout pattern can cancel nth order gradient effects

[33, 34, 35]. A typical 2nd order common centroid layout, shown in Fig. 3.6 (a), can reduce

the 1st and 2nd order gradient error. Although higher-order layout patterns can reduce higher-

order gradient effects, they require a more complicated wiring connection and larger die area.

Considering such trade-off, a 2nd order common centroid layout is employed in our design, as

shown in Fig. 3.6 (b). The RBR3 has the similar size of MSB resistors, so RBR3 is grouped

with 143 resistors into a resistor array with size of 144. Those 144 resistors are separated into 8
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Figure 3.6: (a)2nd Order Common Centroid Layout Example; (b)Layout of the MSB Segment

sub-groups, and the 2nd order common centroid pattern is applied to them as shown in Fig.3.6

(b). The total area of the MSB segment is about 2600µm × 1600µm. A similar 2nd order

common centroid layout is applied to the ISB and LSB segments.

3.2.2.3 Layout for Switch Pair and Digital Circuits

Mismatches in on-resistance of switch pairs is an important reason for the degradation of the

linearity performance of the DAC. Since large switch pairs are employed in the MSB segment,

common centroid layout techniques are also applied to the switch pair design, as shown in Fig.

3.7(a). The size of the MSB switch is W = 1.2µm,L = 800nm, number of fingers = 16 and

Multiplier = 16, so each switch has 16 different sub-cells. By applying a 2nd order common

centroid layout, the 1st and 2nd order gradient errors can be minimized.
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Figure 3.7: (a)Common Centroid Layout for a Switch Pair; (b)A Digital Signal Buffer Tree

To perform the OEM calibration, digital circuits must be implemented for each resistor in

the unary-weighted arrays. However, the area of the MSB and ISB resistor arrays are so large

that a large timing delay exists between different resistors in the same resistor array. This

may cause serious timing problems, since we use the series-in and series-out method to change

the data in the memory cells for each resistor. To balance the digital control signals to each

resistor, a digital signal buffer tree is designed, the layout of which is shown in Fig. 3.7(b).

Adding the buffer tree makes the delay from the top level input to each resistor almost the

same, so the timing issue can be avoided for OEM calibration.
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Figure 3.8: Layout of One-resistor OEM Logic

Furthermore, the width of the MSB resistor is chosen as 5.4 µm, with 5.6 µm space between

resistors. To align the OEM digital circuits with the resistors, the layout of 1 bit OEM logic

is 11 µm wide, as shown in Fig. 3.8. For each resistor in the MSB segment, 3-bit OEM

registers, a 8-1 OEM mux and a switch driver are integrated in the one-resistor OEM logic

layout. There are 143 resistors in the MSB segment, so there are 143 OEM logic and switch

pairs. As mentioned previously, the buffer tree is inserted to balance the signals from the top

to each resistor as shown in Fig. 3.9. Similar digital circuits and buffer trees are designed for

the ISB segment.
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Figure 3.9: Layout of MSB Buffer Tree, Digital Circuits and Switches
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Figure 3.10: The Top Level Test Scheme

3.3 Test Scheme and Test Board Design

In this section, the test scheme and PCB board design are described in detail.

3.3.1 Test Scheme

The top level test scheme is shown in Fig.3.10. A Lattice FPGA board is used to generate

the digital input and the clock signals to the DAC test PCB board. Those input signals

to the DAC test PCB board are employed to measure and perform OEM calibration. From

the digital output signal of the DAC, the FPGA board can verify the function of the OEM

calibration digital circuits. The analog output signals of the DAC are sent to a 24-bit sigma-

delta evaluation board (ADS1259EVM) for measurement, as this is the ADC with the best

linearity performance we can find.

3.3.2 Test Board Design

3.3.2.1 Output Buffer Design

The output buffer should have high gain, low noise, low offset and large driving capacity

for our application. Therefore, two-amplifier combined structure was employed, as shown in

Fig. 3.11(a), in which A1 is ADI ADA4528 and A2 is ADI ADA4898. Their key specifications

are shown in TABLE 3.4.
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Figure 3.11: (a)Output Buffer Design for DAC Tests; (b)Reference Buffer Design for DAC

Tests

ADA4528 has a very low offset voltage (0.3 µV (typical), 2.5 µV (max)), low noise and high

gain. ADA4898 has high gain together with a large drive ability (40 mA linear output current).

The output buffer could achieve a dc gain of about 257dB, PM=58 degree, and its total output

voltage noise is 0.35 µV (0.1m∼1KHz).
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Table 3.4: Key Specifications of A1 and A2

A1(ADA4528) A2(ADA4898)

VOS(µV ) 0.3(TYP)/2.5(MAX) 20(TYP)/125(MAX)

-3dB BW(MHz) 6.5 65

Aol(dB) 139(TYP)/127(MIN) 103(TYP)/99(MIN)

ISC(mA) ±40 ±150

Input noise density

nV/
√
Hz

5.6 0.9

Voltage supply range (V) 2.2∼ 5.5 10∼ 32

3.3.2.2 Reference Buffer Design

The reference buffer has a structure similar to that of the output buffer, as shown in Fig.

3.11(b). The only difference is that there is no feedback resistor Rf in the reference buffer.

3.3.2.3 Reference Design

4 LTC 6655 [36] reference circuits are paralleled together to generate the required 3.3V

reference voltage. It can achieve a temperature coefficient less than 2 ppm/C.

3.3.2.4 Digital Buffer and Switch Implementation

Because digital buffers are necessary to synchronize the input digital and clock signals from

the FPGA board, several digital buffer circuits are implemented in the PCB board.

As discussed in the previous chapter, applying OEM binarization to the ISB segment re-

quires switching the reference voltage from the VREF to Vtest1 node, so a switch circuit is needed

in the test board. A relay circuit is used as the switching circuit in our design because of its

low on-resistance.

3.3.2.5 The Whole PCB Design

The whole test PCB board is shown in Fig. 3.12. The digital signals are input from the

FPGA header (HD). The chip is seated in a 128-pin chip socket and connected to the test board
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Figure 3.12: The Whole Test PCB Board

by the socket. The Output buffers are made as close as possible to the socket to minimize the

parasitic resistance in the output path. The reference circuit, reference buffer and relay are all

shown in Fig. 3.12.

3.4 Measurement Results

After fabrication, the DAC chip is measured by a designed test scheme, and the OEM and

gain calibration are applied to it. The result is shown in Fig. 3.13 and summarized in TABLE

3.5. From the measurement results, the INL of the DAC is seen to be 1.625 LSB (LSB in 18 bit

level) and the DNL is seen to be about 1.08 LSB. As a result, the linearity performance is in

17 bit level. The total area of the chip is about 10 mm2. For comparison, based on the intrinsic

matching performance of the GF 130 nm process, the required area can be calculated to be

about 309.6 mm2, as shown in TABLE 3.6; this area is almost impossible to be implemented

as a single chip. Therefore, the proposed DAC structure can significantly reduce the required
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Figure 3.13: The Measurement Results

Table 3.5: Measurement Results

Total

INL

LSB

INL

ISB

INL

MSB

INL

Total

DNL

LSB

DNL

ISB

DNL

MSB

DNL

MATLAB

Simulation (LSB)
1.625 0.205 1.032 1.491 1.084 0.147 0.925 0.956

area for high-precision DAC design and implement a high-precision DAC in a low-cost process.

Compared with the schematic simulation results shown in section 2, there is a large differ-

ence of the linearity performance in the measurement result, which is due to the parasitic wire

resistance and the noise effect. The first of these is the most important cause of performance

degradation; wire resistance is crucial to the linearity performance of a high accuracy DAC. As

shown in Fig .3.14, it is the MSB segment in the proposed DAC structure. The effect of wire

resistance can be analyzed as follows: The wire resistances Rw0 and Rw3 connecting to Ioutb

bring no errors, as they have almost no impact on the output current. The current flowing

through wire resistance (Rw4) connecting to VREF does not change with input code, because

the Iout + Ioutb is always constant. Thus, Rw4 does not create nonlinearity errors with input

code variations. The wire resistance Rw2 generates nonlinear errors, but Rw2 is independent

for each branch. This kind of error can be calibrated by OEM calibration. However, wire resis-
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Table 3.6: Area Comparison

Chip area (mm2)

Estimated area to achieve

17-bit accuracy by

intrinsic matching(mm2)

10 309.6

tance Rw1 connecting to Iout causes interaction of different branches and results in nonlinearity

errors with changing in the input code. To illustrate its effect on the linearity performance of

the R-DAC, the INL with and without the Rw1 wire resistance is compared in Fig. 3.15, using

results from schematic simulations. Accuracy of about 21 bit can be achieved without wire

resistance. In our design, the resistor in the MSB segment have a large area and space, so a

three-layer-parallel very wide (more than 100 µm width) wire is used to connect all resistors

in the MSB segment. It can achieve Rw1 = 0.6 mΩ, but such small wire resistance still can

degrade the INL performance to less than the 18 bit level, as shown in Fig. 3.15. To achieve

20-bit INL performance, the largest tolerable wire resistance is as low as Rw1 = 20 µΩ, which

requires about 3 mm width if a three-layer-paralleled wire connection is used. Therefore, the

required wire resistance is impossible to realize by wide wiring or multiple layers in the GF 130

nm process, and it is the dominant factor limiting the linearity performance of our proposed

structure.
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Figure 3.14: Simplified DAC Structure With Wire Resistance

Figure 3.15: INL Performance Comparison for DAC With and Without Wire Resistance

The second important factor that limits linearity performance is noise. Although the testing

ADC: ADS1259EVM is the ADC with the best linearity performance that we could find, its
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Table 3.7: Noise Performance of the ADS1259EVM

Data Rate (SPS) Noise free bits

10 21.4

50 20.4

400 19

1200 18.2

measurement accuracy is limited by its noise performance, as shown in TABLE 3.7. Other

important components on the test board contribute additional noise, such as the reference

circuit, reference buffer and output buffer.

3.5 Conclusion

As a design example to verify the proposed structure, a high-precision DAC was designed in

a 130 nm Global Foundry (GF) CMOS process. The 130 nm GF process features high-density

digital circuits but lacks high-precision resistors or any resistor trimming techniques, making it

generally unsuitable for any high-precision DAC design. However, we implemented our design

in such a process from behavioral model to schematic and layout design. A complicated test

scheme and PCB design were also performed. The simulation and measurement results show

that the proposed DAC structure can greatly reduce the area requirement and make it possible

to implement a 17-bit DAC without use of a high-precision fabrication process. As a result,

it is demonstrated that our proposed DAC structure can significantly lower the costs of high-

precision DAC design.
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CHAPTER 4. EFFICIENT VERIFICATION AGAINST UNDESIRED

OPERATING POINTS FOR MOS ANALOG CIRCUITS

4.1 Introduction

Feedback is a very powerful circuit design technique that has found wide application in

analog circuits. While various feedback approaches, e.g. self-biasing [5], bootstrapping [6],

and digitally-assisted-analog [7] have been applied to analog circuits, these may make a system

vulnerable to multiple operating points. The existence of undesired operating points is an

important problem in many analog circuits such as bias generators, current/voltage references,

temperature sensors, supply regulators, and frequency generators [37, 38, 39, 40]. Such analog

circuits are present in virtually all non-trivial circuits and the integration of analog with mixed-

signal circuits has grown rapidly with emerging IC applications. Once a circuit is locked

into an undesired operating point, it may experience dramatic performance loss and system

failure may result, possibly damaging system components or requiring a power recycle for

unlocking. Circuits with undetected operating points can be devastating, particularly when

they are used in critical systems such as automotive, health care, and military applications.

As a result, identifying the presence/absence of undesired operating points is one of the most

critical problems in circuit design; undesired operating points must be identified and eliminated

for proper circuit operation.

However, since existing circuit simulators provide only a single operating point[8], recog-

nizing the existence of undesired operating point largely depends on the designer’s experience.

The most popular technique for removing undesired operating point is to use start-up circuits,

but sometimes, because of unanticipated transients and variations in operating conditions, a

circuit equipped with start-up circuits may still enter into an unknown operating point. In some
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circuits, even most experienced designers are not aware that a circuit they have designed has

undesired operating point potential and such operating points often go undetected in standard

simulations used in the design process.

Various approaches for finding operating points of circuits can be found in the literature,

and they could specifically be used to detect undesired operating points. Topological methods

identify multiple operating points using graphical representation and certain topological criteria

[41, 42, 43, 44, 45]. However, even though topological methods may simply identify the existence

of multiple operating points by examining the structure of a circuit, they never take into account

device and environmental parameters, so their validity is limited by certain assumptions of the

circuits.

Aside from topology methods, many researchers prefer to regard a circuit as a matrix of

equations and try to seek a mathematical solution. This, however, is equivalent to solving

simultaneous non-linear equations and the effort becomes formidable as the size of circuits

grows. As a result, several approximation methods for obtaining circuit solution have been

developed. Piecewise-linear methods can discover all operating points of a circuit based on

piecewise-linear approximations of non-linear devices [46, 47, 48, 49]. Contraction methods

can frame non-linear functions appearing in the mathematical description of the circuit and

exploit formulas using matrix theory to contract a hyper-rectangular region that includes the

solutions [50, 51]. Interval methods seek a set of solutions based on interval analysis theory

[52, 53]. However, all these methods rely on simplifying device models or replacing non-linear

equations by linear ones, so they are often not applicable to large-scale circuits and many

practical applications.

The continuous/homotopy approach is another popular method for identifying a circuit’s

operating point. In general, this type of method entails embedding one or two continuation

parameters into a set of non-linear equations, thereby causing a continuous deformation from

a known or easily-computed solution to the required solution. In [54], Goldgeisser and Green

presented an algorithm that realizes a continuous deformation ranging from a short circuit to

an open circuit by adding parametrically-represented resistors at each transistor. Roychowd-

hury and Melville demonstrated that certain common circuit structures can lead to extreme
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inefficiency or failure and developed a new homotopy MOS model featuring decoupled contin-

uation parameters in [55]. An efficient deflation technique was developed by Tadeusiewicz and

Halgas in [56] and combined with the homotopy method to find multiple DC operating points

of CMOS circuits. In [57], Inoue, et al., proposed a Newton homotopy method that chooses

one of the node voltages in each positive feedback loop (PFL) as variable and implemented this

method using SPICE transient analysis. These methods could trace DC solutions, but they

could not guarantee that all operating points would be identified; their implementation is also

tedious.

Because a positive feedback structure is the cause of multiple operating points in the circuit

[42], break-loop homotopy methods were proposed to find multiple operating points. This often

involves introduction of a voltage or current source that can be swept to trace operating points

of a circuit [58, 6], but it relies on linear ramp-up of inserted sources and generally has very

low efficiency, and achieving an accurate result can require very long simulation time because

a small sweeping step size is needed. It also assumes that the PFL are already known and does

not provide a systematic approach for how to break the PFLs. In [59], Premoli, et al., proposed

an approach that identifies the loops in circuits by topology partitioning and adds independent

voltage sources to open the loop. Even though this approach does not guarantee that all of the

solutions will be found, it is numerically efficient and able to deal with medium-size circuits.

However, it doesn’t present a method to automatically identify the feedback loops in circuits

and distinguish between PFLs and negative feedback loops (NFLs).

In summary, all these methods attempt to find all the operating points of a circuit, a very

complicated problem. Identification of all operating points can be very difficult even for simple

circuits, e.g., two-transistor circuits [60, 61, 62]. Therefore, simple and efficient verification

methods that are guaranteed to find all operating points in even rather simple circuits do not

exist.

Recently a divide and contraction verification method for discovering the existence of unde-

sired operating points was proposed in [63]. Contrary to traditional methods used to deal with

discovery of operating points, this method does not try to find all operating points or even any

operating point at all. It only targets finding voltage intervals that contain undesired operat-
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ing points and thereby verifying existence of undesired operating points. If such an interval is

detected, it proves that there is at least one undesired operating point in this circuit and noti-

fies the designer to deal with it. This essentially replaces a difficult root-finding problem with

simply identifying the existence of test intervals that include undesired operating points. For

this reason, the method is efficient and can dramatically reduce computational requirements

to determine the presence/absence of undesired operating point. However, implementation of

this method is only briefly mentioned in the paper and its resultant algorithm can only apply

to MOS circuits having a node where all the PFLs can be broken without cutting off any NFL.

In this chapter, the divide and contraction verification method to identify the existence of

undesired operating points is systematically proposed and its application is extended to more

general MOS analog circuits. The method is based on an approach that automatically converts

a circuit netlist to a Directed Dependency Graph (DDG) for MOS circuits. From the definition

of signs of dependencies for MOSFETs, all PFLs and NFLs are found and distinguished. The

PFL breaking method and selection of breaking node that determines whether a monotonic

return function of PFLs can be obtained are also discussed. Based on the monotonicity of the

return function, two types of divide and contraction algorithms are proposed to efficiently search

voltage intervals containing operating points. The proposed method has been implemented in

standard circuit simulators such as Spectre and Ultrasim, and simulation results show that this

method is effective and efficient in identifying undesired operating points in a set of commonly

used benchmark circuits, including bias generators, current/voltage references, temperature

sensors and op-amps [64].

This chapter is organized as follows. Section 2 introduces the systematic method for find-

ing feedback loops and determining their signs; section 3 discusses the break-loop homotopy

method and the return function characteristics; section 4 and 5 illustrate the proposed divide

and contraction algorithms for monotonic and non-monotonic return functions respectively;

simulation results are provided in section 6. Discussion is given in section 7, and conclusions

are stated in section 8.
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4.2 Feedback Loop Finding and Sign Determination

In this section, a systematic method that automatically identifies feedback loops and de-

termines their signs is introduced. The approach to automatically convert a circuit netlist into

a DDG is studied, and all the PFLs and NFLs in the circuit are determined based on the

definition of signs of dependencies for MOSFETs.

4.2.1 Convert Circuit Netlist to Graph

A systematic approach to automatically convert the MOS circuit into a DDG was proposed

in [65]. For a MOSFET, the drain-source is considered as a channel that conducts current flow-

ing in a branch from V dd to gnd (which is defined as a “branch-current” in [65]). The voltage

of any net that controls the gate-source voltage of any MOSFET is defined as a “controlling

voltage”. Following that, dependencies between the controlling voltages and branch-currents

are identified. For example, there is a dependency from gate voltage to the branch-current that

flows through the drain-source channel of a MOSFET. On the other hand, the branch-current

will affect the drain or source voltage (if drain or source node is not connected to a power

supply or an independent source) that creates a current to voltage dependency. As a result,

the controlling voltages and branch-currents form vertices of the DDG and the dependencies

between them form edges of the DDG.

For example, in the inverse Widlar Bias Generator (Inv-Widlar) shown in Fig. 4.1(a), two

independent branches are identified; the left branch can be written as VDD, M4(VDD, V1),

M1(V1, gnd), gnd and the right branch can be written as VDD, M5(VDD, V2), M2(V2, V3),

M3(V3, gnd), gnd. The current flowing in these two branches are labeled I1 and I2, respec-

tively. V2 is a controlling voltage from M1 which controls the current I1 and we thus obtain one

voltage to current dependency: V2 → I1. Similarly, V1 is a controlling voltage from M5 which

controls the current I2 and we obtain another voltage to current dependency: V1 → I2. Note

that diode-connected transistors such as M2,M3 and M4 are treated as resistors. Finally, two

current to voltage dependencies are found: I1 → V1 and I2 → V2 . The DDG of this circuit is

shown as Fig. 4.1(b).



www.manaraa.com

62

VDD

M4

M1

V1

M3

M2

V2

M5

I1 I2

V1

V2

I1 I2

(a) (b)

V3

Figure 4.1: (a) Inv-Widlar Circuit; (b) Circuit Graph for Inv-Widlar Circuit

Table 4.1: The Signs of Different Dependencies for MOSFETs

Voltage to current dependency Sign Current to voltage dependency Sign

VG,PMOS
a→ ISD − ISD → VS,PMOS −

VG,NMOS → IDS + IDS → VS,NMOS +

VS,PMOS → ISD + ISD → VD,PMOS +

VS,NMOS → IDS − IDS → VD,NMOS −

a VG,PMOS stands for the gate voltage of PMOS; S stands for source and D stands for drain

4.2.2 Determine the Signs of Feedback Loops

A feedback loop is composed of alternating I → V ,V → I dependencies with any vertex

being visited at most once and the initial and terminal vertices are the same [66]. Thus, when

determining the sign of a feedback loop, we choose one arbitrary vertex in it as the starting
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point and follow the dependency direction to assign a sign for each edge. Each I → V or V → I

dependency is determined by the static I/V characteristics of the related devices in the loop.

Given a dependency Y → X, its sign is defined to be the sign of ∂Y
∂X . The signs of possible

dependencies for a MOSFET are summarized in TABLE 4.1.

Taking a NMOS as an example, we could analyze the sign of dependencies between its

terminals and drain-source current. Assuming other input variables constant, the increase of

gate voltage gives rise to the growth of drain-source current for a NMOS, i.e., ∂IDS
∂VG,NMOS

> 0

that establishes a positive dependency for VG,NMOS → IDS . Likewise, the negative dependency

of VS,NMOS → IDS is due to ∂IDS
∂VS,NMOS

< 0. As far as the signs of dependency IDS → VD,NMOS

and IDS → VS,NMOS are concerned, they could be analyzed as follows.

Since any vertex is visited at most once in each feedback loop, there is only one MOSFET in

each involved branch, whose drain-source current is strongly regulated by a controlling voltage

generated in other branches. Such a MOSFET is called a “controlling MOSFET” that adjusts

a branch-current in a feedback loop. Therefore, only controlling MOSFETs should be included

to decide the signs of dependencies in a feedback loop, and they can be regarded as current

sources regulated by controlling voltages generated in other branches. As an example, a NMOS

controlling MOSFET is shown in Fig. 4.2. Other devices in the same branch are defined as

“resistive devices”, referring to two-terminal devices that have the following relationship,

∂V

∂I
> 0 (4.1)

where V is the voltage across the device and I is the current flowing through it. In addition,

V and I have the same signs as shown in Fig. 4.2, so the voltage across the resistive devices

increases with the rise of flowing through current.

For a resistor or a diode-connected transistor (treated as a resistor), the relationship ∂V
∂I > 0

is valid, so they are resistive devices. Another type of resistive device is the drain-source

channels of MOSFETs other than the controlling MOSFET in a branch. Their gate voltages

are constant because the feedback loop only alters their drain and source voltages by changing

the branch-current. So they can be regarded as two-terminal components with relationships



www.manaraa.com

64

IDS

VD

VDD

Resistive 

devices

Resistive 

devices

VS

 Vcontrol

V
+

_ I

Figure 4.2: Analyzing the Sign of Dependency for Drain-source Current to Source/Drain Volt-

age in a NMOS

given by ∂VDS
∂IDS

> 0 for a NMOS and ∂VSD
∂ISD

> 0 for a PMOS. Thus a drain-source MOSFET

channel other than that of the controlling MOSFET is also a resistive device. As far as an

ordinary diode is concerned, it can be proven that its ∂V
∂I > 0 so it is also a resistive device. For

most analog circuits, only these three types of devices are involved in the DC analysis and all

of them are resistive devices. As a result, with the rise of current IDS , the voltage across the

resistive devices between the source and gnd increases, i.e.,
∂VS,NMOS

∂IDS
> 0. Thus, the sign of the

dependency VS,NMOS → IDS is positive. Similarly a negative dependency for IDS → VD,NMOS

is found since VD is equal to VDD minus the voltage across certain resistive devices. The signs

of dependencies for a PMOS can be acquired in a similar way. Now a PFL can be defined as

a feedback loop that contains a positive even number of negative dependencies, and a NFL is

defined as a feedback loop that contains an odd number of negative dependencies [65]. As an

example, by applying the signs of dependencies to the DDG of the Inv-widlar shown in Fig.

4.1(b), it can be seen that there is one PFL I1 → V1 → I2 → V2 in the Inv-widlar circuit.

It’s worth pointing out that the sign of a feedback loop does not change with different

operating points, assuming that the drain/source of any MOSFET in the loop are well-defined.

If the drain and source nodes do not exchange, the signs of dependencies involved in each

MOSFET will not be altered with variation of operating points. Such design criteria is met for
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most existing well-designed analog circuits and should be checked by designers from the circuit

topology. In our method, the drain/source is determined by following a branch from VDD to

gnd, e.g., for a NMOS, the terminal that is closer to VDD is the drain and the other side is the

source.

4.3 PFLs Breaking and Return Function

After all the feedback loops and their signs are identified in the circuit, a method for breaking

all the PFLs must be found. In this section, methods to break all the PFLs is discussed and

the return function of a PFL is defined. The breaking method and selection of breaking node

to generate monotonic return function will then be studied. After that, several important

definitions and theorems regarding the return function are advanced.

4.3.1 Break PFLs and Obtain a Return Function

After all PFLs are identified in the circuit, they can be broken by different circuit-level

homotopy methods. These methods often involve introduction of a testing source that can be

swept to trace a returning signal. A valid operating point of a circuit is identified when the

returning signal satisfies certain conditions. They can be categorized into four different types

according to the voltage/current testing source and returning current or voltage signals[67]. If

a current source is included for sweeping, determination of the range over which the current

should be swept may require considerable effort, so voltage test sources are generally more

preferable. Moreover, the relationship between a voltage testing source and a returning current

signal is usually unknown as they can be found by solving complex I-V equations. However, if

a certain breaking method and break node selection are used, there is a monotonic relationship

between a voltage testing signal and a returning voltage signal, as will be illustrated in the

following section.

An example of breaking the PFLs in a MOS circuit is shown in Fig. 4.3, in which V2 in

the inverse Widlar Bias Generator (Inv-Widlar) broken into V ′2 and V ′′2 . Since the break is

made at the gate of a MOS device where the input impedance is ideally infinite, loop loading

is not affected by this break. The loop is then driven by a voltage source (VIN ) inserted at
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Figure 4.3: Circuit Graph for Inv-Widlar Showing the Break-loop Homotopy.

the break. With a predetermined sweep range, any voltage at which V ′′2 = VIN is an operating

point. Since all the PFLs are broken, each input test signal x = VIN is related to exactly one

output V ′′2 = f(x), so f(x) is called the return function of the PFL. The return function is

determined by the static I/V characteristics of the devices involved in each PFL. Besides, the

I/V characteristics of real circuit devices associated with DC analysis are generally continuous.

Thereby, a return function can be regarded as a continuous function.

4.3.2 Monotonic Return Function

Definition 1 : If ∀x1, x2 ∈ [a, b] such that x1 > x2 one has f(x1) > f(x2), the return function

f(x) is called monotonic return function.

The return function in a circuit is composed of multiple dependency relationships, and each

of these relationships is either a current to voltage or a voltage to current dependency resulting

from the static I/V characteristics of a device in the feedback loop. Although the numerical

I/V relationship is nonlinear and difficult to calculate from the related static I/V functions,

the signs of these dependencies are fixed for a given type of device and do not change with

operating points as discussed in section 4.2.2. The sign of derivative of the return function
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Figure 4.4: (a) Signal Map of a Return Function Without NFL; (b) Signal Map of a Return

Function With NFL.

is therefore the product of each dependency relationship. For example, a “signal map” which

illustrates the dependency relationships between a test signal and its return function when a

PFL is broken is shown in Fig. 4.4(a) where x is the test signal, y is the return function, u, w

stands for a controlling voltage or branch-current in the DDG and g, h, m are the static I/V

functions related by each dependency relationship between vertices. It should be noted that

the numerical values of these dependency relationships vary with the operating points but their

fixed signs result from the static I/V functions of a certain device in the feedback loop. Since

y is a composition of related static I/V functions, i.e., y = m(h(g(x))), we can calculate the

derivative of the return function from the chain rule as follows.

∂y

∂x
=
∂y

∂w
· ∂w
∂u
· ∂u
∂x

=
∂m

∂w
· ∂h
∂u
· ∂g
∂x

(4.2)

So the sign of derivative of the return function is,

sgn(
∂y

∂x
) = sgn(

∂m

∂w
) · sgn(

∂h

∂u
) · sgn(

∂g

∂x
) (4.3)

Suppose g, h and m form a PFL, sgn(∂m∂w ) ·sgn(∂h∂u) ·sgn( ∂g∂x) > 0. Then the derivative of return

function ∂y
∂x > 0 from (4.3).

However, if only the PFLs are broken, there may exist NFLs in the signal path from test

signal x to the return function y. Moreover, in most practical circuits, only simple NFL

structures exist and complex nested NFLs are seldom used, so only a simple example is shown

here as in Fig. 4.4 (b). Assuming w → v → w is a NFL, it has ∂k
∂v ·

∂n
∂w ·

∂p
∂z < 0 where

z = h(u) + k(n(w)).
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Since w = p(z), it gets,

∂w

∂u
=
∂p

∂z
· (∂h
∂u

+
∂k

∂v
· ∂n
∂w
· ∂w
∂u

)

⇒ ∂w

∂u
=

∂p
∂z ·

∂h
∂u

1− ∂k
∂v ·

∂n
∂w ·

∂p
∂z

(4.4)

From (4.4), it can be concluded that the sign of the ∂w
∂u is equal to the sign of ∂p

∂z ·
∂h
∂u as

∂k
∂v ·

∂n
∂w ·

∂p
∂z < 0. Similar to the previous example, ∂y

∂x = ∂y
∂w ·

∂w
∂u ·

∂u
∂x . As a result, it gets,

sgn(
∂y

∂x
) = sgn(

∂m

∂w
) · sgn(

∂p

∂z
) · sgn(

∂h

∂u
) · sgn(

∂g

∂x
) (4.5)

If g, h, p and m form a PFL, sgn(∂m∂w ) · sgn(∂p∂z ) · sgn(∂h∂u) · sgn( ∂g∂x) > 0, so the derivative of

return function ∂y
∂x > 0 from (4.5).

Therefore, in practical circuits, if only PFLs are broken, the return function is monotonic.

For traditional break-loop methods, a linear ramp up voltage source is inserted and swept

over the whole power supply range to search for operating points. However, this method has

low efficiency if high accuracy or large circuit scale is required. By analyzing the properties

of the return function and voltage intervals, we can quickly detect the existence of undesired

operating points in a circuit.

4.3.3 Definitions and Theorems for General Return Function

First, one type of interval could be defined as a Sign-Change Interval(SCI); its return

function crosses the input interval.

Definition 2 : An interval [a, b] is a Sign-Change Interval (SCI) of the PFL if (f(a)− a)×

(f(b)− b) < 0, where f(x) is the return function of the PFL, continuous on [a, b].

Fig. 4.5 gives two examples of SCIs. For an SCI, the return function of the PFL is

continuous in [a, b], and combined with the condition (f(a) − a) × (f(b) − b) < 0, there is at

least one operating point ε ∈ (a, b) such that i.e. f(ε) = ε from the intermediate value theorem.

The following is theorem 1.

Theorem 1 : There is at least one operating point in an SCI.

The second type of interval to be defined is the Sign-Definite Interval (SDI) whose return

function has no intersection with the input interval.
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Figure 4.5: Examples of Sign Change Interval (SCI) With Monotonic Return Function.

Definition 3 : An interval [a, b] is a Sign-Definite Interval (SDI) of the PFL if f(x) > x,∀x ∈

[a, b] or f(x) < x,∀x ∈ [a, b], where f(x) is the return function of the PFL.

In Fig. 4.5, two examples of SDI are given.

It is obvious that in an SDI there is no operating point where f(x) = x, so we can state:

Theorem 2 : There is no operating point in an SDI.
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Figure 4.6: Examples of Sign Definite Interval (SDI) With Monotonic Return Function.

4.3.4 Definitions and Theorems for Monotonic Return Function

In this subsection, the monotonic return function is discussed.

From its definition, an SDI is difficult to verify. However, for a monotonic return function,

an SDI can easily be identified using Lemma 1 and Corollary 1.

Lemma 1 : Assuming f(x) to be a monotonic return function of the PFL, if f(a) > b or

f(b) < a, then [a, b] is an SDI.

Proof. As shown in Fig. 4.6 (a), if f(a) > b, it follows that f(a) > b ≥ a. Since f(x) is a

monotonic return function, we obtain f(b) ≥ f(a) > b.
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Assuming that there is one c ∈ (a, b) such that f(c) ≤ c. Then, because f(a) > b and c < b,

we obtain f(a) > f(c), contradicting the assumption that f(x) is a monotonic return function

of the PFL.

This proves that f(x) > x,∀x ∈ [a, b], i.e., [a, b] is an SDI.

Similarly, as shown in Fig. 4.6 (b), it could be proven that if f(b) < a, then f(x) < x,∀x ∈

[a, b], i.e., [a, b] is an SDI.

As shown in Fig. 4.5 (b), for a monotonic return function f(x), if f(a) > a, then [a, f(a)]

is an SDI because there is no f(x) = x,∀x ∈ [a, f(a)]. Similarly, [f(b), b] is also an SDI if

f(b) < b. We therefore obtain corollary 1 and its proof as follows.

Corollary 1 : Assuming that f(x) is a monotonic return function of the PFL, if f(a) > a,

then [a, f(a)] is an SDI; If f(b) < b, then [f(b), b] is an SDI.

Proof. If f(a) > a, assume that there is one c ∈ (a, f(a)] that f(c) ≤ c.

Then, because f(a) ≥ c and c > a, we obtain f(a) ≥ c ≥ f(c) contradicting the assumption

that f(x) is a monotonic return function. This proves that if f(a) > a, then f(x) > x, ∀x ∈

[a, f(a)], i.e., [a, f(a)] is an SDI.

Similarly, it could be proven that, if f(b) < b, then [f(b), b] is an SDI.

4.3.5 Verification for Different Types of Return Functions

As in the previous discussion, if the return function is monotonic, the SDI can be detected

by the Lemma 1 and Corollary 1, resulting in higher verification efficiency as illustrated in a

later section. We also known the monotonic return function could be obtained by breaking

only PFLs without cutting off any NFL. So from the DDG of the analog circuit, a graph theory

technique will be employed to search the break node where all the PFLs can be broken without

interrupting any NFL[65]. The existence of such break node determines the monotonicity of

the corresponding return function. For monotonic and non-monotonic return function, two

types of Divide and Contraction algorithms are proposed and illustrated in the following two

sections.
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4.4 Divide and Contraction Algorithms for Monotonic Return Function

Two types of divide and contraction algorithms applied to monotonic return function are

illustrated in this section. We first introduce the Monotonic Divide and Contraction (MDC)

algorithm to be applied to the monotonic return function. Since the desired operating point

is usually specified by the circuit designer, an improved algorithm called the User-defined

Monotonic Divide and Contraction (UMDC) algorithm is discussed in the second subsection.

4.4.1 Monotonic Divide and Contraction (MDC) Algorithm

From Theorem 1, SCIs could be verified by evaluating return functions of test interval

boundaries. The return functions f(a) and f(b) are obtained by DC simulation for the test

voltage interval [a, b]. Then, the test interval could be proven to be an SCI if (f(a)−a)×(f(b)−

b) < 0. If two separate SCIs are identified, it can be concluded that more than one operating

point exists in the circuit, i.e., there is at least one undesired operating point. For a monotonic

return function, SDI could be easily identified by Lemma 1 and Corollary 1. Dropping all the

SDIs in the test interval could significantly improve the verification efficiency.

We therefore will develop our Monotonic Divide and Contraction (MDC) algorithm, whose

flow chart is shown in Fig. 4.7.

Step 0. Two queues should be initialized at this step: the Test Interval Queue (TIQ), a

queue containing all the input testing intervals; and an SCI queue (SCIQ), the queue including

all the SCIs found. The TIQ is initialized to the power supply range of the circuit and the

return functions of the test interval boundaries are obtained by circuit simulation. From the

definition of SCI, SCIQ is also initialized to the power supply range.

Step 1. In this step, the first interval in the TIQ is popped out for testing. Because TIQ is

sorted from large width to small width (this will be explained in step 7), the first test interval

in the TIQ is always the largest and denoted as TIQ(1). Consequently, width of TIQ(1) less

than our setting error tolerance ε indicates that all the intervals in the TIQ are smaller than

ε and no existence of undesired operating point has been found in the circuit under the given

error-tolerance setting, and the flow exits and reports this result.
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Step 2. The TIQ(1) is divided into two parts with equal width, e.g., the interval [a, b] is

divided into [a, c] and [c, b], where c = (a+ b)/2. Moreover, f(c) is obtained by simulation and

recorded.

Step 3. From previous steps, the TIQ(1) is divided into two sub-intervals, and this step

assesses whether they are SCI. If any of them is an SCI, the flow goes to step 4; if not, it

goes to step 6.

Step 4. Since one or two SCIs are found from step 3, we need to check whether any of

them is an interval separated from the existing SCI in the SCIQ. If the SCI in the SCIQ

contains the new SCI identified in step 3, the former is replaced by the latter; otherwise the

new SCI is inserted into the SCIQ.

Step 5. The size of the SCIQ is examined in this step, and if larger than or equal to two,

it denotes existence of more than one operating points, i.e., there is at least one undesired

operating point. In that case the algorithm exits and gives a report; otherwise proceed to step

6.

Step 6. This step identifies and drops all the SDIs in the two sub-intervals. It worth

mentioning that, the whole of one sub-interval may be an SDI according to Lemma 1. In that

case, there is only one sub-interval needed to be inserted back into TIQ in following step 7.

Step 7. Sub-intervals are inserted back into the TIQ. Because an interval with larger width

usually implies greater likelihood of an operating point, the sub-intervals are inserted into the

TIQ according to their width. This step is accomplished by a binary search in the TIQ and

an insert operation. After finishing this step, the TIQ is refreshed and the flow moves back to

step 1 to check the new TIQ(1).

4.4.2 User-defined Monotonic Divide and Contraction (UMDC) Algorithm

In practice, the desired operating point is known by the circuit designers and the desired

operating point with a tolerable range could be defined as one SCI by users. In such a case,

finding another SCI separated from the one that is user-defined indicates existence of an

undesired operating point. Based on this consideration, the MDC algorithm could be modified

into a User-defined Monotonic Divide and Contraction (UMDC) algorithm and efficiency in
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Figure 4.7: Flow Chart of the MDC Algorithm.

discovering the existence of undesired operating points could be further improved. The UMDC

algorithm can be illustrated as follows:

Step 0. Similar to the MDC algorithm, TIQ and SCIQ are initialized at this step. The only

difference is in the initialization of SCIQ. For the UMDC, SCIQ is initialized as containing

only one interval, the user-defined interval including the desired operating point.

Step 1. This step is the same as MDC step 1.

Step 2. If the width of TIQ(1) is larger than ε, this step checks to see if the test interval

TIQ(1) is embraced by the user-defined SCI in the SCIQ. If so, the TIQ(1) is ignored and

the flow proceeds to step 1, otherwise proceed to step 3.

Step 3. This step is the same as MDC step 3.

Step 4. Similar to MDC step 4 except that if any of the sub-intervals is verified to be an

SCI, it reports that the existence of undesired operating points has been found and the flow

exits. Since step 2 excludes all test intervals embraced by the user-defined SCI, finding one

SCI denotes that at least one undesired operating point exists.
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Figure 4.8: Flow Chart of the UMDC Algorithm.

Step 5 and Step 6 are the same as MDC step 6 and step 7, respectively.

The flow chart of the UMDC algorithm is shown in Fig. 4.8. Compared to the MDC, the

UMDC algorithm is simplified and the computational time for verifying the undesired operating

point is reduced.

4.5 Divide and Contraction Algorithms for Non-monotonic Return

Function

PFLs in circuit may share some parts with NFL so PFLs cannot be broken without cutting

off the NFLs. In this case, the return function is not guaranteed to be monotonic and the

MDC/UMDC algorithms cannot be applied. For such circuits, we proposed a General Divide

and Contraction (GDC) algorithm and a User-defined General Divide and Contraction (UGDC)

algorithm.
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Figure 4.9: Flow Chart of the GDC Algorithm.

4.5.1 General Divide and Contraction (GDC) Algorithm

The flow chart of the GDC algorithm is shown in Fig. 4.9. Compared with the flow chart

of the MDC, the GDC cannot drop SDIs in the test interval due to its return function is

not monotonic. Although it usually has less efficiency than the MDC algorithm, the GDC

algorithm can be applied to more general circuits for verification.

4.5.2 User-defined General Divide and Contraction (UGDC) Algorithm

Similar to the UMDC, the GDC algorithm could be modified into a User-defined General

Divide and Contraction (UGDC) algorithm if the desired operating point is defined by the user.

The flow chart of the UDC algorithm is shown in Fig. 4.10.

Compared with the GDC, the UGDC algorithm reduces computational time and improves

verification efficiency.
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Figure 4.10: Flow Chart of the UGDC Algorithm.

4.6 Simulation Results

The proposed divide and contraction verification method has been implemented in standard

circuit simulators such as Spectre and Ultrasim. It can automatically find all the PFLs and

NFLs in the circuit and search for break nodes. Then it employs the proposed divide and

contraction algorithms to identify the existence of undesired operating point. According to

[68], the computational complexity for converting a circuit to a DDG and identifying and

breaking loops is approximately linear with circuit size; this is expected to be similar to a

single DC simulation. Thus the computational requirement of our method is dominated by the

number of DC simulations, and that is why we just compare the number of DC simulations

among various methods. A set of widely used benchmark circuits designed by 0.6µm CMOS

techniques including bias generators, current/voltage references, temperature sensors, and op-

amps [64] has been verified. Some have been selected as examples to demonstrate the concept

and efficiency of our method, as shown in this section.

Example 1: Consider one of the benchmark circuits—the bootstrapped Vt reference circuit

and its circuit graph (as shown in the Fig. 4.11). There is one PFL (I2 → V1 → I1 → V2 → I2)



www.manaraa.com

78

VDD

M4

M1

V1
M3

M2

V2
I1 I2

V3

V1

I1 I2

R1

V3

V2

Figure 4.11: Circuit Graph for the Bootstrapped Vt Reference Circuit.

and two NFLs (I2 → V3 → I1 → V2 → I2 and I2 → V3 → I2)in this circuit. If V1 is broken,

then only the PFL is broken, resulting in a monotonic return function. A voltage source is

inserted at the gate of M4 to drive the loop.

The proposed MDC algorithm can be applied to this circuit to verify if it has multiple

operating points; a traditional linear-sweeping method (linearly ramp up the voltage source to

get the operating point) is provided for comparison. TABLE 4.2 shows the simulation results:

with temperature at 75◦C and VDD at 5V , the designed bootstrapped Vt reference circuit has

three operating points according to the result of the linear sweeping method using a 0.1mV

step size. The operating point 3.5885V is our desired operating point, while 4.5658V and

4.6301V are undesired operating points. On the other hand, MDC provides one operating

point 4.6301V and an interval in which lies at least one operating point, [3.4002V, 4.0154V ].

From the MDC algorithm, the existence of undesired operating points in this circuit is verified.

More importantly, although the error tolerance of MDC is the same as the step size of the linear

sweeping method, the efficiencies of these two methods are significantly different; it took 50000

DC simulations for the linear sweeping method to find the three operating points, while the

MDC algorithm found the existence of undesired operating point in only 8 DC simulations! The

proposed divide and contraction algorithm dramatically reduces computational requirements
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Table 4.2: Simulation Results of Bootstrapped Vt Reference Circuit

VDD=5V

Temperature=75 ◦C
Linear Sweeping MDC GDC

Number of simulation 50000 8 63

Step size/Error tolerance 0.1mV 0.1mV 0.1mV

Operating points

3 OP: 3.5885V

(desired one),

4.5658V

(undesired)

and 4.6301V

(undesired)

[3.4002V,

4.0154V ]

and

4.6301V a

[3.5156V,

3.5938V ]

and

[4.6094V,

4.6875V ]

a When the width of the SCI is less than the error tolerance, it is regarded as one operating

point.

and identifies the existence of undesired operating points with much higher efficiency.

For comparison, it took 63 DC simulations for the GDC algorithm to find two test intervals

that included operating points as shown in TABLE 4.2. Although this is still very fast compared

with the linear sweeping method, GDC is usually less efficient than the MDC, so for the general

analog circuit, the proposed method will automatically check whether there exists a break node

to obtain a monotonic return function [68]. With such a break node, it applys the MDC/UMDC

algorithm; otherwise it uses the GDC/UGDC algorithm.

Example 2: To remove the undesired operating point, a certain start-up circuit should be

added to the circuit. Fig. 4.12 illustrates a bootstrapped Vt reference where M5,M6 and R2

form a start-up circuit. Comparison of results with those of linear-sweeping method is shown

in TABLE 4.3. The step size of the linear sweep is also the same as the error tolerance of

the MDC algorithm. Although the two methods provide the same desired operating point, the

linear-sweep method took 50000 simulations compared to only 17 simulations for the MDC

algorithm. The verification efficiency can be improved even further by employing the UMDC

algorithm. Given a user-defined interval [3.5635V, 3.6135V ] and 0.1mV error tolerance, the

UMDC concluded there were no other operating points beyond the user-defined SCI in only

11 DC simulations. The proposed verification method could thus efficiently verify the efficacy

of the start-up circuit.
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Figure 4.12: Circuit Graph for the Bootstrapped Vt Reference Circuit With Start-up Circuit.

Table 4.3: Simulation Results of Bootstrapped Vt Reference With Start-up Circuit

VDD=5V

Temperature=75◦C
Linear Sweeping MDC UMDC

User-define SCI N/A N/A
[3.5635V,

3.6135V ]

Number of simulation 50000 17 11

Step size/Error tolerance 0.1mV 0.1mV 0.1mV

Operating points
1OP :

3.5885V

1OP :

3.5885V

No

other

OP

Example 3: Let’s look at another example circuit-the self-biased Banba bandgap reference

[69] shown in Fig. 4.13. From its circuit graph (Fig. 4.14), there are three PFLs and five NFLs:

PFL 1: I5 → VA → I3 → V1 → I2 → V2 → I1 → Vo → I5

PFL 2: I2 → V2 → I1 → Vo → I7 → V3 → I6 → Vbias → I2

PFL 3: I5 → VA → I3 → V4 → I2 → V2 → I1 → Vo → I5

NFL 1: I2 → V2 → I1 → Vo → I4 → VB → I2

NFL 2: I2 → V2 → I1 → Vo → I7 → V3 → I6 → Vbias → I3 → V1 → I2

NFL 3: I1 → Vo → I7 → V3 → I6 → Vbias → I1
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Figure 4.13: Self-biased Banba Bandgap Reference Circuit.

NFL 4: I2 → V2 → I1 → Vo → I7 → V3 → I6 → Vbias → I3 → V4 → I2

NFL 5: I2 → V4 → I3 → V1 → I2

From the circuit graph, there is no node in this circuit where all the PFLs could be broken

without interrupting any NFL, so only GDC/UGDC can be applied to identify the existence of

undesired operating point. Vo is chosen to be broken into V ′o and V ′′o . A voltage source is inserted

at node V ′o . The circuit implementation is shown in Fig. 4.15. TABLE 4.4 shows the results:

with temperature at 0◦C and VDD at 2V , the linear-sweep method requires 20000 simulations

with step size 0.1mV to find three operating points: 0.7383V is the desired operating point,

while 0.8857V and 1.1305V are the undesired operating points. In contrast, with 0.1mV error

tolerance, the GDC finds the two intervals [0.5000V, 0.7500V ] and [1.0000V, 1.5000V ] in 7 DC

simulations. Furthermore, given a user-defined interval [0.7133V, 0.7633V ] , the UGDC finds

the interval [0.9750V, 2.0000V ] beyond the user-defined SCI in only 5 DC simulations. This

demonstrated that the GDC/UGDC algorithm can efficiently identify the existence of undesired

operating point in more general analog circuits.

4.7 Discussion

In most MOS analog circuits, there are various sub-circuits with feedback structures which

are susceptible to the existence of undesired operating points, such as bias generators, curren-

t/voltage references, temperature sensors. However, existing circuit simulators provide only a
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Figure 4.14: Circuit Graph of the Self-biased Banba Bandgap Reference Circuit
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Figure 4.15: Implementation of Breaking Loop of the Self-biased Banba Bandgap Reference

Circuit

single operating point, and general methods to solve all operating points in even rather simple

circuits do not exist. The proposed method targets to efficiently identify the existence of un-

desired operating points in those widely used analog circuits. It can be an important tool for

the designers indicating the existence of undesired operating points.

Compared with other methods for finding operating points in literature, the proposed analog

verification method offers several valuable advantages:

First, it significantly reduces computational requirements to identify the existence of un-

desired operating point in analog circuits. It can automatically identify all the feedback loops

from a circuit netlist and determine their signs. Moreover, the number of DC simulations re-
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Table 4.4: Simulation Results of Self-biased Banba Bandgap Reference Circuit

VDD=2V Linear Sweeping GDC UGDC

Temperature(◦C) 0 0 0

User-define SCI N/A N/A
[0.7133V,

0.7633V ]

Number of simulation 20000 7 5

Step size/Error tolerance 0.1mV 0.1mV 0.1mV

Operating points

3 OP:

0.7383V

(desired),

0.8857V

(undesired)

and

1.1305V

(undesired)

[0.5000V,

0.7500V ]

and

[1.0000V,

1.5000V ]

[0.9750V,

2.0000V ]

is

found

quired to find the presence/absence of undesired operating points is dramatically reduced by

the divide and contraction algorithms, so it can be applied to larger size analog circuits and is

therefore appropriate for use in more practical applications.

Second, this method does not rely on simplifying the device models or linearizing the circuit.

As a result, unlike topological or piecewise-linear methods, it takes into account the device

and environmental parameters and provides an accurate verification result under practical

simulation circumstances.

Third, it can easily be implemented in standard circuit simulators such as Spectre or Ul-

trasim. The implementation of this method does not require building any new MOS model or

other complicated methodology to form continuous deformation as in other homotopy methods.

In comparison, the whole flow of our method has been realized as an automatic tool with much

less effort.

This method does, however, have some limitations: For large scale circuits, graph theory

techniques can be employed to partition the DDG into strongly connected components (SCCs),
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which is equivalent to partitioning the original circuit into several sub-circuits [68] that can be

separately verified. There may exist one or multiple PFLs in an SCC. If all PFLs can be broken

at a single node for each SCC, the circuit is called Single-Input Single-Output (SISO) circuit.

In its current form, the proposed divide and contraction method only applies to SISO circuits

that can have a single input and a single output when all the PFLs are broken in each SCC.

For Multiple-Input Multiple-Output (MIMO) circuits, that is, circuits can only have multiple

inputs and multiple outputs when all the PFLs are broken in any SCC, an extended version of

the divide and contraction algorithms needs to be developed.

The applications of the proposed method are still limited to MOS circuits and whether

it gives correct result for BJT circuits is not guaranteed. This is due to the fact that the

impedance at the base of a BJT could not be generally regarded as infinite as in the gate of a

MOSFET. The loop loading effect of breaking the BJT circuits thus could not be ignored. To

solve this problem, a method for breaking a BJT circuit is also under study.

Furthermore, the robustness of proposed verification method is worth discussion. For both

linear sweeping and the proposed method, adjacent operating points may be undetectable if

they lie in an interval with width less than the error tolerance ε. Besides only reducing the error

tolerance as linear sweeping method, the proposed method can also improve its robustness as

follows.

In practice, this method not only checks the width of a test interval [a, b] but also evaluates

the values of f(a) − a and f(b) − b. If no undesired operating point is identified under the

existing error tolerance setting, it also gives warnings if there exists suspicious intervals that

may include undesired operating point and designers need to check them with smaller error

tolerance setting. Specifically, for a monotonic return function f(x), there are two types of

suspicious intervals. The first meets the following conditions: b − a ≤ ε, 0 < f(a) − a,

0 < f(b) − b, and f(a) − a ≤ ε. This is due to the fact that ∀x ∈ (a, b) if b − a ≤ ε,

0 < f(a)− a, 0 < f(b)− b and ε < f(a)− a, then f(x) > x. It can be proven as follows. Since

f(x) is a monotonic return function, f(x) > f(a) > a+ ε. Also x < a+ ε due to that b− a ≤ ε

and x ∈ (a, b). Thus, it gets f(x)− x > a+ ε− x > 0. The other type of suspicious interval is

b− a ≤ ε, 0 < a− f(a), 0 < b− f(b) and b− f(b) ≤ ε and similar proof can be applied to.



www.manaraa.com

85

Moreover, running the verifications at different PVT (power supply, process and tempera-

ture) settings can obtain a more robust result. The proposed method can efficiently identify

the existence of undesired operating point in each PVT setting. With PVT variations, return

functions may have large changes and the existence of undesired operating points could be

found.

4.8 Conclusion

In this chapter, an efficient and systematic analog verification method for identifying the

existence of undesired operating points for MOS analog circuits has been proposed. Unlike

traditional approaches which find all operating points of the circuit, the method searches voltage

intervals that contain undesired operating point based on the break-loop homotopy method.

First, an approach that automatically converts a MOS analog circuit into a directed de-

pendency graph is introduced. Then, all the feedback loops in the circuit are found and their

signs determined. Positive feedback loops breaking method and selection of breaking nodes are

studied to decide if a monotonic return function can be obtained. Based on the monotonicity of

the return function, two types of divide and contraction algorithms that can efficiently identify

the existence of undesired operating point in analog circuits are presented.

Compared with other approaches in literature, the proposed method provides several valu-

able advantages. Since this method is based on a circuit-level break-loop homotopy method, it

can take into account device and environment parameters and provide an accurate verification

result. The realization of proposed method requires much less effort and the method can be

easily implemented in standard circuit simulators such as Spectre or Ultrasim. Finally, since

this method significantly cuts down on computational requirements, it can be applied to larger

size analog circuits and is therefore eligible for more practical applications.

Simulation results show the proposed method to be effective and efficient in identifying

undesired operating points in a set of commonly used benchmark circuits, including bias gen-

erators, voltage references, temperature sensors, and op-amps.
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CHAPTER 5. TWO DIMENSIONAL ANALOG VERIFICATIONS

AGAINST UNDESIRED OPERATING POINTS FOR MOS ANALOG

CIRCUITS

5.1 Introduction

The existence of undesired operating points is an important problem in many analog circuits

such as bias generators, current references, temperature sensors, and Bandgap references. In

addition, various feedback approaches, e.g., self-biasing, bootstrapping, self-stabilization, and

digitally-assisted-analog are applied in analog circuits to enhance their performance. Inevitably,

these methods result in structures with one or more feedback loops that make them vulnerable

to the presence of undesired operating points. The effect of undetected operating points can

be devastating, particularly in critical systems such as automotive, health care, and military

products. As a result, identifying the presence/absence of undesired operating points is a critical

problem in circuit design, and undesired operating points should be identified and eliminated

for proper circuit operation.

However, since the existing circuit simulators provide only a single operating point [8],

recognizing the existence of undesired operating points largely depends on the experience of

designers. To remove undesired operating points, the most popular technique uses start-up

circuits. When power is supplied, a start-up circuit is supposed to circumvent entrance of the

circuit into the undesired operating points. Nonetheless, because of unanticipated transients

and variations of working conditions, the circuit with start-up circuits may still enter an un-

known operating point and fail [63]. With some circuits, even the most experienced designers

are not aware that a circuit they designed has undesired operating points, which often go

undetected in the standard simulations used in the design process. It can be very costly if



www.manaraa.com

87

the undesired operating point in the circuit is first detected in field by a customer. However,

more and more basic circuits are designed by new graduates or inexperienced analog engineers

and circuit designers continuously add “smart components” in their design utilizing feedback.

Consequently, the undesired operating points may increasingly be a widespread and insidious

problem plaguing the circuit design industry.

Various specific approaches in the literature could be used to detect undesired operating

points in circuits. Topological methods identify multiple operating points, using graphical

representation and certain topological criteria [41, 42, 43, 44, 45]. However, although topological

methods may identify the existence of multiple operating points by examining the structure of

a circuit, they never take into account device and environmental parameters, so their validity

is limited by certain assumptions regarding the circuits.

In additional to topological methods, many approximation approaches for obtaining circuit

solution have been developed, since formidable effort would be necessary to find all the math-

ematical solutions of the circuit non-linear equations matrix . Piecewise-linear methods can

discover all operating points of a circuit based on piecewise-linear approximations of non-linear

devices [46, 47, 48, 49]. Contraction methods can frame non-linear functions appearing in the

mathematical description of the circuit and exploit formulas using matrix theory to contract

a hyper-rectangular region that includes the solutions [50, 51]. Interval methods seek a set of

solutions based on interval analysis theory [52, 53]. However, all these methods rely on sim-

plifying device models or replacing non-linear equations by linear ones; consequently, they are

often not applicable to large-scale circuits or to many practical applications.

The homotopy/continuation approach is another popular method of identifying a circuit’s

operating points. In general, this type of method entails embedding one or two continuation

parameters into a set of non-linear equations, thereby causing a continuous deformation from

a known or easily-computed solution to the required solution [54, 55, 56, 57]. The homotopy/-

continuation methods could trace DC solutions, but they could not guarantee that all operating

points would be identified; also their implementation is tedious.

Because a positive feedback structure is the cause of multiple operating points in the circuit

[42], break-loop homotopy methods have been proposed to find multiple operating points. This
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often involves introduction of a voltage or current source that can be swept to trace operating

points of a circuit [58, 6, 59], but it relies on linear ramp-up of inserted sources and generally

has very low efficiency; also, achieving accurate results can require a very long simulation time

because a small sweeping step is needed. It also assumes that the PFLs are already known

and does not provide a method to automatically identify the feedback loops in circuits and

distinguish between PFLs and negative feedback loops (NFLs).

In summary, all these methods attempt to find all the operating points of a circuit, a very

complicated problem, which can be very difficult even with simple circuits, e.g., two-transistor

circuits [60, 61, 62]. Therefore, simple and efficient verification methods that are guaranteed

to find all operating points in even rather simple circuits do not exist.

Recently, a divide and contraction verification method for discovering the existence of un-

desired operating points was systematically proposed [70]. In contrast to traditional methods

of dealing with discovery of operating points, this method does not try to find all operating

points or even any operating point at all. It only targets finding voltage intervals that contain

undesired operating points, thereby verifying the existence of undesired operating points. This

essentially replaces a difficult root-finding problem with simply identifying the existence of test

intervals that include undesired operating points. To achieve this, the method automatically

converts a circuit netlist to a Directed Dependency Graph (DDG) and finds all the PFLs and

NFLs in the circuit. By breaking all the PFLs and applying the proposed divide and contrac-

tion algorithm, the method can dramatically reduce computational requirements to determine

the presence/absence of undesired operating point. However, the method focuses mainly on the

one dimensional analog verification problems, i.e., the verification of fixed transistor size, fixed

Process/Voltage supply/Temperature (PVT) setting and one input voltage source to break all

the PFLs (B1P circuits).

In practice, designers also need to verify circuits with the transistor sizing, PVT variations

or identify the existence of undesired operating points in complicated circuits whose PFLs

cannot be broken at only one point (B2P circuits). This type of problems is called the two

dimensional analog verification against undesired operating points, which will be discussed in

this chapter. For this type of verification, a two dimensional vector field method is proposed,
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which can effective identify the existence of undesired operating points by visualizing the return

functions in the circuits.

This chapter is organized as follows: Section 2 introduces the two dimensional analog

verification problems; section 3 discusses the two dimensional vector field characteristics; section

4 illustrates the proposed two dimensional vector field method. Application examples are given

in section 5, and conclusions are stated in section 6.

5.2 Two Dimensional Analog Verification Problems

The verification method proposed in [70] mainly focuses on the one dimensional problems

such as exists with a fixed PVT setting and one input voltage source to break all the PFLs.

However, two dimensional analog verification also needs to be implemented, such as the PVT

variation, transistor sizing or complicated circuits that need more than one point to break all

the PFLs. These two dimensional analog verification problems are illustrated in this section.

5.2.1 B1P and B2P circuits

For large scale circuits, graph theory techniques can be employed to partition the DDG into

strongly connected components (SCCs), which is equivalent to partitioning the original circuit

into several sub-circuits [68] that can be separately verified. There may exist one or multiple

PFLs in an SCC, and a break point set (BPS) of an SCC is used to represent a minimum subset

of controlling-voltage nodes that will break all the PFLs if removed from the SCC. With use

of existing algorithms in graph theory [71, 72], the BPS of an SCC can be found with high

efficiency. The size of the BPS (|BPS|) stands for the minimum number of controlling-voltage

nodes to break all the PFLs in an SCC.

If all the SCCs in the circuit have |BPS| = 1, i.e., all PFLs can be broken at a single point

for each SCC, the circuit is called a break-one-point (B1P) circuit. Most of the commonly used

analog circuits, including bias generators, current/voltage references, temperature sensors and

op-amps are B1P circuits. If any SCC has |BPS| = 2 and all other SCCs have |BPS| ≤ 2,

the circuit is called a break-two-point (B2P) circuit. For SCCs with |BPS| > 2, the circuit
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Figure 5.1: Break the Bootstrapped Vt Reference Circuit

has more than two PFLs coupled with each other, and at least three voltage sources have to

be inserted and swept simultaneously, which is rare for practical circuits.

The verification of B1P circuits in a fixed setting (such as specified PVT, etc.) is a one

dimensional problem. For example, the bootstrapped Vt reference circuit (as shown in Fig.

5.1) is a B1P circuit with one SCC and has multiple operating points at high temperatures. By

breaking at the V1 node and sweeping the inserted voltage source x, the output return function

can be obtained, as shown in Fig. 5.1. From the break-loop homotopy method, DC operating

points exist where the input x = f(x). Except for the one dimensional problems, verification

of B1P circuits with PVT variations or the B2P circuits are two dimensional problems.

5.2.2 Existence of Undesired Operating Points with Temperature Variation

Analog circuits should be designed to have only one operating point at a fixed working

temperature, which can be guaranteed by the method proposed in [70]. However, the circuits

may be locked into an undesired operating point with temperature variations. Fig. 5.2 shows

the return functions of the bootstrapped Vt reference circuit at different temperatures. At
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Figure 5.2: Return Functions of the Bootstrapped Vt Reference Circuit at Different Tempera-

tures

a temperature of 25◦C, there is only one operating point in this circuit. However, there are

multiple operating points when the temperature is 100◦C.

Therefore, methods are required to verify the existence of undesired operating points in

analog circuits with temperature variations.

5.2.3 Existence of Undesired Operating Points with Voltage Supply Variation

In general, the voltage supply of circuits varies somewhat because of the load or environ-

mental changes, and undesired operating points may exist with variation of the voltage supply.

Using the bootstrapped Vt reference circuit as an example, its return functions at voltage sup-

ply 5V and 3V are shown in Fig. 5.3. In the circuit, undesired operating points do not exist

at V DD = 5V , but they appear when the voltage supply drops to 3V. Therefore, an effective

method of verifying the existence of undesired operating points with variation of the voltage

supply is needed.
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Figure 5.3: Return Functions of the Bootstrapped Vt Reference Circuit at VDD=3V and

VDD=5V

5.2.4 Existence of Undesired Operating Points with Process Variations

Process variations are also important factors that affect the existence of undesired operat-

ing points. With a different process corner, the model parameters of the circuit components

are changed; this alters the static I-V relationships in the circuits, which results in different

operating points. Consequently, the existence of undesired operating points as a result of the

process variations should be verified.

5.2.5 Existence of Undesired Operating Points with Transistor Sizing

In many designs, undesired operating points of a circuit can be eliminated by changing the

transistor size. For example, by sizing the M1 in the bootstrapped Vt reference circuit (as

shown in the Fig. 5.4), the undesired operating point can be eliminated. As shown in Fig. 5.4,
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Figure 5.4: Return Functions of the Bootstrapped Vt Reference Circuit at Different M1 Sizing

if the width of the M1 is reduced by half, there is only one operating point in the circuit when

the temperature is 70◦C and V DD = 5V . Therefore, verification of undesired operating points

by changing transistor size provides great convenience to designers.

5.2.6 Existence of Undesired Operating Points in B2P Circuits

To verify a B2P circuit, two voltage sources should be inserted and swept simultaneously,

so it is essentially a two dimensional problem. A typical B2P circuit is the Van Kessel-Banba

circuit [73, 69] as shown in Fig. 5.5. In this circuit, the Van Kessel circuit is used to generate

the bias current for the Banba bandgap circuit, which in turn provides the bias voltage for the

Van Kessel circuit. Its corresponding circuit graph (DDG) seen in Fig. 5.6, shows that there

are 8 PFLs and 6 NFLs in the circuit. To break all the PFLs, at least two break nodes should

be broken, such as Vo and V3. To verify such a type of circuit, a new verification method should

be proposed.
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5.3 Two Dimensional Vector Fields

In this section, the definition of a two dimensional vector field is given. After that, the two

dimensional vector fields for continuous dynamic systems and discrete dynamic systems are

discussed respectively.

In vector calculus, a two dimensional vector field is defined as a function whose input is

a point in R2 and whose output is a vector (also in R2 ) emanating from the point [74]. For
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Figure 5.7: An Example of a Two Dimensional Vector Field

example, a two dimensional vector field can be written as,

~F

(
x

y

)
=

 x2 + y

y2 + 2x

 (5.1)

and it can be plotted as shown in Fig. 5.7.

A vector field shows a collection of arrows with a given magnitude and direction with each

point in the plane. For example, each vector in the plane shown in Fig. 5.7 can stand for

the speed and direction of a moving fluid through space, or the strength and direction of a

magnetic or gravitational force, etc. A two dimensional vector field visualizes a moving fluid,

or a magnetic or gravitational force.

Vector fields are applied in the analysis of dynamic systems, especially when the analytic

expressions of the systems are unknown. For example, it is always difficult to obtain an expres-

sion of the speed and direction of every point in a moving fluid, but the speed and direction of

each point in the fluid can be measured, so the moving fluid can be visualized by the model of a

vector field. For each point in the vector field, the direction of its vector shows the direction of

movement and the length of the vector indicates the speed. An equilibrium point exists where
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the speed of the system equals zero, i.e., the length of the vector at that point is zero. In this

way, the whole dynamic system is visualized by the vector field without solving its analytic

expression.

For a two dimensional discrete dynamic system, it is defined as follows:

xk+1 = xk + g(xk, yk)

yk+1 = yk + h(xk, yk) (5.2)

where k stands for the kth iteration, and h and g are the iteration functions in the x and y

directions, respectively. Thus, the relationship is as follows:

~F

(
x

y

)
=

g(x, y)

h(x, y)

 (5.3)

An equilibrium point is where g(x, y) = 0 and h(x, y) = 0. Since g(x, y) and h(x, y) are smooth

continuous functions, the directions and lengths of vectors gradually change from one point in

the system to another. On that basis, equilibrium points can be approximately identified.

A simple example as shown in Fig. 5.8 can be used to intuitively illustrate how to find the

equilibrium points in a two dimensional vector field of a discrete dynamic system. In the two

dimensional interval x = [−1, 1]×y = [−1, 1], all the vectors point to the center (x = 0, y = 0).

This indicates that the system will eventually move toward the center, which is an equilibrium

point, regardless of the location of the initial start point in the two dimensional interval.
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Figure 5.8: A Two Dimensional Vector Field of a Discrete Dynamic System

A two dimensional continuous dynamic system has the following relationship:

ẋ = g(x, y)

ẏ = h(x, y) (5.4)

where ẋ is the derivative of x, and h and g are vector functions in the x and y directions,

respectively. Thus, a two dimensional vector field of a continuous dynamic system can be

defined as,

~F

(
x

y

)
=

g(x, y)

h(x, y)

 (5.5)

Similarly, g(x, y) = 0 and h(x, y) = 0 indicate an equilibrium point. The directions and

lengths of vectors gradually change between two points in the system, since g(x, y) and h(x, y)

are smooth continuous functions. Thus, equilibrium points can be approximately identified by

observing the length and directions of vectors.

Fig. 5.9 shows a two dimensional vector field of a continuous dynamic system, where all

the vector converge to the center (x = 0, y = 0). Thus, a point in the two dimensional interval
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Figure 5.9: A Two Dimensional Vector Field of a Continuous Dynamic System

x = [−1, 1]×y = [−1, 1] cannot move to another point but eventually goes to the center, which

is an equilibrium point.

5.4 Application of Two Dimensional Vector Fields to Analog Verification

The two dimensional verification problems mentioned in section 3 can be solved by use of

two dimensional vector fields. The applied two dimensional vector fields are introduced in this

section.

5.4.1 Two Dimensional Vector Fields for Temperature Verification

The break-loop homotopy method breaks all PFLs in the circuit and inserts a voltage source

that can be swept to trace the operating points of a circuit [58, 6]. Since all the PFLs are broken,

each input test signal x is related to exactly one output f(x), so f(x) is called the return function

of the PFL [70]. Because seeking the operating point is equivalent to obtaining mathematical

solutions of the circuit non-linear equations matrix, obtaining an analytic expression of the
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return function f(x) is formidable. However, for each test signal x, f(x) can be evaluated by

one DC simulation. Therefore, vector fields can be applied to find the characteristic of the

return function and identify the existence of undesired operating points.

An operating point is where f(x) − x = 0, and an interval [a, b] is a Sign-Change Interval

(SCI) of the PFL if (f(a)− a)× (f(b)− b) < 0 [70]. Since there is at least one operating point

in an SCI [70], identification of two SCIs is equivalent to finding the existence of undesired

operating points.

Therefore, to verify the existence of undesired operating points in circuits with temperature

variation, a two dimensional vector field can be defined as follows:

~F

(
x

T

)
=

f(x)− x

0

 (5.6)

where x is the voltage of input voltage source, f(x) is the corresponding return function, and

T is the temperature. Since the y dimension of the vector is zero, all vectors are parallel to

the x axis. SCIs can be identified by observing the vectors in the x direction. For example,

with the temperature T0 and input voltages a and b, if the direction of vector ~F
(
a
T0

)
is different

from ~F
(
b
T0

)
, this indicates that (f(a) − a) × (f(b) − b) < 0, whereby an SCI is identified.

Finding two SCIs at a certain temperature proves the existence of undesired operating points

at that temperature. Therefore, the existence of undesired operating points with temperature

variations is verified.

One example of a two dimensional vector field for temperature verification is shown in Fig.

5.10. The x axis is the input voltage and the y axis is the temperature. In Fig. 5.10, if the

vector length is close to zero, it is marked as red or cyan; otherwise, it is shown as pink. For each

temperature, observing two red/cyan regions separated by pink vectors indicates the existence

of more than two operating points. Therefore, Fig. 5.10 clearly indicates the existence of more

than two operating points in the temperature range from 84◦C to 128◦C.

5.4.2 Two Dimensional Vector Fields for Voltage Supply Variation

Similarly, another type of two dimensional vector field can be used to verify the existence

of undesired operating points in circuits with voltage supply variation, and can be defined as



www.manaraa.com

100

Figure 5.10: Bootstrapped Vt Reference Circuit’s Two Dimensional Vector Field for Temper-

ature Verification

following,

~F

(
x

V

)
=

f(x)− x

0

 (5.7)

where x is the voltage of input voltage source, f(x) is the corresponding return function, and

V is the voltage supply. Similarly, the y dimension of the vector is also zero, so all the vectors

are parallel to the x axis and SCIs can be identified by observing the vectors in the x direction.

With the voltage supply V0 and input voltages a and b, if the direction of vector ~F
(
a
V0

)
is

different from that ~F
(
b
V0

)
, it shows that (f(a)− a)× (f(b)− b) < 0, and an SCI is found. The

existence of two SCIs in a voltage supply identifies the existence of undesired operating points.

Therefore, the existence of undesired operating points with voltage supply variations can be

verified.
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5.4.3 Two Dimensional Vector Fields for Transistor Sizing

As mentioned earlier, great convenience is provided to designers if circuits can be verified

according to transistor sizing. Thus, a third type of two dimensional vector field to identify

the existence of undesired operating points in circuits with transistor sizing can be defined as:

~F

(
x

S

)
=

f(x)− x

0

 (5.8)

where x is the voltage of the input voltage source, f(x) is the corresponding return function,

and S is the size of the tuning transistor. Similarly, all the vectors are parallel to the x axis

and SCIs can be identified by observing the vectors in the x direction. With the transistor

size S0 and input voltages a and b, if the direction of vector ~F
(
a
S0

)
is different from that of

~F
(
b
V0

)
, (f(a)− a)× (f(b)− b) < 0 and an SCI is found. In this way, the existence of undesired

operating points with transistor sizing can be verified.

5.4.4 Two Dimensional Vector Fields for B2P Circuits

To verify B2P circuits, the fourth type of two dimensional vector field can be defined as

follows:

~F

(
x1
x2

)
=

f1(x1)− x1
f2(x2)− x2

 (5.9)

where x1 is the voltage of the input voltage source at the first break node, f1(x1) is the

corresponding return function, x2 is the voltage of the input voltage source at the second break

node, and f2(x2) is the corresponding return function. The vector has components in both the

x and the y direction because of simultaneously sweeping two voltage sources.

An equilibrium point is the point at which the vector length equals zero. Since f1(x1)− x1

and f2(x2) − x2 are smooth continuous functions, the directions and lengths of the vectors

gradually change from one point in the system to another. On that basis, equilibrium points of

dynamic systems can be approximately identified from the vector directions. An equilibrium

exists where the vector lengths equal zero, since this indicates that system will stay at that

point.
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Figure 5.11: Van Kessel-Banba Circuit’s Two Dimensional Vector Field

An example of a two dimensional vector field for a B2P circuit is shown in Fig. 5.11. The

x axis is one inserted voltage source V 1 and the y axis is the voltage source V 2. Similar to

Fig. 5.10, all the vector lengths are greatly reduced but their directions are unchanged. Those

vectors with lengths close to zero are marked as red or cyan; other vectors are pink. If there

are two disjoint red/cyan regions, this indicates the existence of undesired operating points.

Fig. 5.10 shows that there are two operating points in [3.59V, 3.91V ] × [1.81V, 1.94V ] and

[3.44V, 3.75V ]× [1.25V, 1.38V ].

5.5 Application Examples

A set of widely used benchmark circuits designed by use of 0.6µm CMOS technology,

including bias generators, current/voltage references, temperature sensors, and op-amps [64],

has been verified. Some have been selected as examples to demonstrate the proposed two

dimensional vector field method shown in this section.
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5.5.1 Analog Verification with PVT Variation

Example 1: Consider one of the benchmark circuits—the bootstrapped Vt reference circuit

and its circuit graph (as shown in the Fig. 4.11.

To verify this B1P circuit with PVT variation, we applied the two dimensional vector field

method. When the circuit works at voltage supply = 5V and typical corner, its two dimensional

vector field is as shown in Fig. 5.10, which clearly indicates the existence of more than two DC

operating points in the temperature range from 84◦C to 128◦C. The PVT verification results are

shown in TABLE 5.1. The temperature range to be verified is from 0◦C to 128◦C, and several

voltage supplies and process corners are verified. With the variation of process corners and

voltage supplies, the temperature ranges associated with undesired operating points change.

Therefore, the two dimensional vector fields can tell the designers if undesired operating points

exist in the circuits as PVT variations occur.

Table 5.1: Simulation Results of Bootstrapped Vt Reference With PVT Variations

Temperature range

with undesired OP

VDD=4V VDD=5V VDD=6V

typical corner 92◦C ∼ 128◦C 84◦C ∼ 128◦C 76◦C ∼ 128◦C

fast corner 84◦C ∼ 128◦C 92◦C ∼ 128◦C 72◦C ∼ 128◦C

slow corner 76◦C ∼ 128◦C 88◦C ∼ 128◦C 70◦C ∼ 128◦C

5.5.2 Analog Verification with Two Dimensional Circuits

Example 2: The Van Kessel-Banba circuit [73, 69] is a typical B2P circuit, as shown in

Fig. 5.5. By breaking at both node Vo and V3, all the PFLs in the circuit can be cut off, as

shown in Fig. 5.13. Its circuit implementation is shown in Fig. 5.12. We can apply our two

dimensional vector field to it. The simulation result in the typical corner is shown in Fig. 5.11;

V1 is the voltage of the Vo node and V2 is the voltage of the V3 node. This indicates that two
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operating points exist, at [3.59V, 3.91V ] × [1.81V, 1.94V ] and [3.44V, 3.75V ] × [1.25V, 1.38V ].

The simulation results are summarized in TABLE 5.2.

5.6 Conclusion

The existence of undesired operating points is an important problem in the design of many

analog circuits, such as bias generators, current references, temperature sensors, and Bandgap

references. In this chapter, we focus on the two dimensional analog verification against unde-

sired operating points, i.e., to verify circuits with the PVT variations, transistor sizing, or B2P

circuits. For this type of verification, a two dimensional vector field method is proposed that

can effectively identify the existence of undesired operating point by visualizing the vector field
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Table 5.2: Simulation Results of the Van Kessel-Banba Circuit

VDD1 VDD2 temperature have undesired OP?
Solution Intervals for

Nodes Vo and V3

5V 2V 0◦C YES
[3.59V, 3.91V ]× [1.81V, 1.94V ]

[3.44V, 3.75V ]× [1.25V, 1.38V ]

of return functions. Simulation results show the proposed method to be effective in identify-

ing undesired operating points in a set of commonly used benchmark circuits, including bias

generators, voltage references, temperature sensors, and op-amps.



www.manaraa.com

106

CHAPTER 6. ITV: A NEW VERIFICATION TOOL TO IDENTIFY

UNDESIRED OPERATING POINTS IN ANALOG AND

MIXED-SIGNAL CIRCUITS

6.1 Introduction

It is well known that undesired operating points exist in many analog circuits, such as

bias generators, current references, temperature sensors, and Bandgap references. In addition,

various feedback approaches, e.g., self-biasing, bootstrapping, self-stabilization, and digitally-

assisted-analog, are applied in designing analog circuits to enhance their performance. In-

evitably, these methods result in structures with one or more feedback loops that make them

vulnerable to the presence of undesired operating points. Circuits with undetected operating

points can have devastating results, particularly when employed in critical systems such as

automotive, health care, and military products. However, there is no reliable approach usable

with currently available commercial simulators to find unexpected multiple operating points

[8]. Recognizing the existence of undesired operating points largely depends on the designer’s

experience. The most popular technique for removing undesired operating points is to use

start-up circuits, but sometimes, because of unanticipated transient and variations in operat-

ing conditions, a circuit equipped with start-up circuits may still enter an unknown operating

point. In some circuits, even the most experienced designers are not aware that a circuit they

have designed has undesired operating point potential, because such operating points often go

undetected in the standard simulations used in the design process.

In chapter 4, an efficient analog verification method against undesired operating points is

systematically proposed. In contrast to traditional methods used to discover operating points,

this method does not try to find all operating points or even any operating point at all. It
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only targets finding voltage intervals that contain undesired operating points, thereby verifying

existence of such operating points. This essentially replaces a difficult root-finding problem with

simply identifying the existence of test intervals that include undesired operating points, which

is why it is efficient and dramatically reduces the computational requirements. However, the

method mainly focuses on the one dimensional analog verification problems, i.e., the verification

in specific transistor size, fixed process/voltage supply/temperature (PVT) setting and one

input voltage test source to break all the PFLs (B1P circuits).

To solve the problem of two dimensional analog verification against undesired operating

points, i.e., to verify circuits with the PVT variations, transistor sizing, or complicated circuits

whose PFLs cannot be broken at only one node (B2P circuits), a two dimensional vector field

method is proposed in chapter 5. It can effective identify the existence of undesired operating

points by visualizing vector fields of return functions.

Based on these two verification methods, a verification tool called “ITV” is proposed in

this chapter to identify undesired operating points in analog and mixed-signal circuits. ITV

automatically converts a circuit netlist to a Directed Dependency Graph (DDG), partitions

the DDG into Strong Connected Components (SCCs) and finds all the PFLs and NFLs in

each SCC. It then identifies the break points to break all the PFLs in each SCC. For one

dimensional verification, it applies the proposed divide and contraction algorithms to determine

the presence/absence of undesired operating points. For a two dimensional verification, the

two dimensional vector field method is applied to identify the existence of undesired operating

points.

This chapter is organized as follows. In section 2, the verification flow is illustrated; the

tool implementation is provided in section 3. The ITV usage is discussed in section 4; section

5 introduces ITV installation, program files and demo circuits; Finally, conclusions are drawn

in section 6.

6.2 Proposed Verification Flow

In this section, the proposed verification flow used in ITV is introduced. Since ITV parti-

tions a circuit graph (DDG) into SCCs, the SCC is introduced first. According to the dimension
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Figure 6.1: An Example of SCC & BPSet

of the verification problems, different verification methods are applied, so classification of one

and second dimensional problems are discussed later. Finally, the whole verification flow is

proposed.

6.2.1 Strongly Connected Component (SCC)

A Strongly Connected Component (SCC) H of a digraph G, is a directed subgraph of G

such that for every pair of vertices u and v in H, there is a directed u − v path and also a

directed v− u path in H [66]. Any digraph can be partitioned into a set of disjoint SCCs. For

example, the digraph corresponding to the node-link diagram in Fig.6.1 has four disjoint SCCs:

H1 : (V1,∅), H2 : (V2,∅), H3 : (V6,∅), H4 : (V3, V4, V5, e4, e5, e6).

The motivation to partition a DDG into SCCs is to partition the original circuit into

several sub-circuits that can be separately verified. This significantly enhances the efficiency

of the break-loop homotopy method for large-scale circuits, since the break-loop method can

be applied to each SCC independently [68].

One or multiple PFLs may exist in an SCC, and a break point set (BPS) of an SCC is

used to represent a minimum subset of controlling voltage nodes that will break all the PFLs if

removed from the SCC. With existing algorithms in graph theory [71, 72], the BPS of an SCC

can be found with high efficiency.

It is assumed that the size of BPS F for each SCC satisfies |F | ≤ 2 where |F | is the size of

BPS. This assumption is reasonable, because |F | > 2 means that a circuit has more than two
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PFLs coupled to each other, which is rare for practical circuits. Furthermore, |F | > 2 means

that, for the break-loop continuation method, at least three voltage sources have to be inserted

and swept simultaneously, which is inefficient.

6.2.2 Dimensions of the Verification Problems

As mentioned in Chapter 5, the divide and contraction verification method proposed in [70]

mainly focuses on a one dimensional problem, such as a fixed PVT setting for B1P circuits.

In practice, designers also need to verify circuits with the transistor sizing, PVT variations or

identify the existence of undesired operating points in B2P circuits. This type of problem is

called two dimensional analog verification against undesired operating points. For this type of

verification, the two dimensional vector field method is applied, which can effectively identify

the existence of undesired operating points by visualizing the return functions in the circuits.

6.2.3 Verification Flow

In summary, the ITV verification is shown in Fig.6.2 as consisting of the following steps:

first, a graphical representation of the circuit (DDG) is obtained that can be used to identify

all structural PFLs of a circuit. From this graphical representation, all the SCCs are identified.

For each SCC, a minimal set of break points (BPS) is determined that can be used to break all

PFLs in the circuit. If the size of BPS is greater than two, i.e., |F | > 2, ITV reports that the

circuit is too complicated to verify and exits; otherwise, it starts the verification process. For

one dimensional verification, the divide and contraction algorithms could be applied to identify

the undesired operating point. The two dimensional vector field methods are used to for the

two dimensional verification.

Each SCC is verified, one by one, until any of them is proven to have undesired operating

points; otherwise, ITV reports that the circuit has only one operating point.

6.3 Tool Implementation

To implement the proposed verification flow, a new EDA tool was developed, the imple-

mentation of which is introduced in this section.
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Figure 6.2: Flow of Proposed Verification Method

6.3.1 ITV Flow

The ITV flow, shown in Fig. 6.3, starts from user interface, which is built into the Cadence

schematic editor. From the user interface, ITV can export the netlist of the schematic to be

verified. ITV converts the generated netlist to DDG and identifies the resulting SCCs. Then,

general graphic algorithms are employed to find BPS in the selected SCC. In the found BPS,

users can choose breaking point(s) to break all the PFLs in an SCC. After that, ITV automat-

ically generates a new netlist, which breaks all the PFLs at the selected break point(s) and

inserts the test voltage source(s). With the new netlist and verification settings, ITV decides

if it is a one dimensional verification. If so, it verifies the circuits by the divide and contraction

algorithm program; Otherwise, the two dimensional vector field method is applied to identify

the existence of undesired operating points. If undesired operating points are discovered or all

SCCs have been verified, it reports the verification results and exits. If there are more SCCs to

be verified and no undesired operating points are detected in the current SCC, ITV goes to the

second SCC and repeats the previous steps in that SCC. The iteration continues until all the
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Figure 6.3: ITV Verification Flow

SCCs are verified without detecting any undesired operating points, or exits when undesired

operating points found in any SCC.

6.3.2 User Interface

To make ITV a convenient tool, a user interface has been developed in the widely used

Cadence analog circuit design environment, using the SKILL language. It is integrated to the

menu of the schematic editor, as shown in Fig. 6.4. ITV can be launched by clicking the “check

→ ITV Verification” button. More details about the user interface are given in section 6.
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Figure 6.4: ITV Menu Item in Cadence Virtuoso Schematic Editor

6.3.3 Implementation of Loop Identification and Break

ITV automatically converts the export netlist to a DDG. First, it searches all the branch-

current between power supply and ground nodes, which is similar to finding all paths between

two nodes in a graph [75]. Therefore, the depth-first search algorithm [76] can be directly

applied. Then, the controlling voltages and the dependencies between the branch-current and

controlling voltage can be identified by analyzing the relationships between the current flowing

in each branch and the gate-source connections of each transistor [68]. Thus, the DDG of the

circuit can be obtained from the netlist.

To decompose a DDG into strongly connected components, ITV uses Tarjan’s algorithm

[77], which has a O(n+ e) running time, where there are n vertices, e edges in the input graph.

Detecting feedback loops for SCC can also be achieved by utilizing standard graph theory

techniques. ITV adopted Johnson’s method, described in [78], which can find all the feedback

loops of a graph in time bounded by O((n+ e)(c+ 1) and space bounded by O(n+ e) , where c

is the number of feedback loops. The sign of the feedback loops can be automatically identified

by the method described in [63].
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The next step is to find BPS to break all the PFLs in each SCC, which is a classic NP-

complete problem [71]. However, it is relatively easy to solve with our application, for the

following reasons. First, the DDG has been partitioned into SCCs such that each SCC is small.

Moreover, it is assumed that the size of BPS for each SCC satisfy |F | ≤ 2, where |F | is the size

of BPS. Therefore, ITV applies the algorithm in [72] to find the BPS for each SCC.

After selecting the break points, ITV applies a script to modify the original netlist. It

automatically breaks at the break point(s), and inserts the test voltage source(s) into the

netlist.

6.3.4 Implementation of Divide and Contraction Algorithms

The divide and contraction algorithms have been implemented in a script program. Each

iteration of the algorithms calls for the circuit simulator to complete the DC simulations,

utilizing the generated netlist from the previous step as an input to the simulator. It also

configures the simulation settings from the user interface, such as settings for the process

corner, voltage supply, temperature, etc. After the simulation, it collects the simulation results

and analyzes them for the existence of undesired operating points. Based on the analysis, it

continues the iteration or reports the existence of undesired operating points.

6.3.5 Implementation of the Two Dimensional Vector Field Method

Similarly, the two dimensional vector field method is implemented in a script program file.

Based on the netlist generated in the previous step and the simulation settings from the user

interface, it calls for the circuit simulator to run the DC simulations. It records all the DC

simulation results of the return functions. A plot program developed by Java is then utilized to

plot the two dimensional vector fields. Depending on the verification settings, it may plot one

or multiple two dimensional vector fields. By analyzing them, the user can conclude whether

or not undesired operating points exist in the circuit.
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Figure 6.5: SCC & BPSet Identification Form

6.4 ITV Usage

In this section, the usage of ITV is introduced in detail. The loop identification and break

functions are first illustrated, after which the run verification settings are given. By reading

this section, readers can have the basic knowledge necessary to use this tool for their analog

circuits verification.

6.4.1 Loop Identification and Break

The first step in ITV verification flow is to identify all the PFLs and determine the break

point. Those functions are implemented as an “SCC & BPSet Identification” form, shown in

Fig. 6.5, which is implemented by SKILL.

In this subsection, each function included in the “SCC & BPSet Identification” form is

illustrated. After knowing these functions, readers are able to use the identify and break loops

functions in ITV.
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6.4.1.1 Construction of DDG and Obtaining SCC

First, ITV automatically converts a MOS circuit into a DDG, using the systematic approach

proposed in [65, 70]. For a MOSFET, the drain-source is considered as a channel that conducts

current flowing in a branch from V dd to gnd (which is defined as a “branch-current” in [65]).

The voltage of any net that controls the gate-source voltage of any MOSFET is defined as

a “controlling voltage.” Following that, dependencies between the controlling voltages and

branch-currents are identified. As a result, the controlling voltages and branch-currents form

vertices of the DDG and the dependencies between them form edges of the DDG.

To identify the branch current in a circuit, the node names of V dd to gnd should be given

to ITV. That is why the user needs to input the VDD and VSS node names in the “Power

Supply Net” frame, as shown in Fig. 6.5. ITV supports multiple power supplies, separating

their names with spaces. With the name of the power supply, ITV automatically analyzes the

circuit’s netlist, and identifies all the branch-currents, controlling voltages and their dependency

relationships.

Then, ITV employs the algorithm from [77] to compose the generated DDG into SCCs.

The result is shown in the “SCC List” frame field. By clicking the button “Obtain SCC”, the

SCC list will appear, as shown in Fig. 6.6. Clicking “DISP” after choosing the SCC causes all

the SCC associated circuit components to be highlighted, and all loops in the SCC are shown

in the “Loops for Selected SCC” frame. For example, the SCC0 is highlighted in Fig. 6.6.

6.4.1.2 Identify Feedback Loops in Circuit

Since DDG is given in the previous step, all feedback loops in SCCs can be automatically

identified by ITV. Based on the sign definitions of dependency relationship, the sign of each

feedback loop can be determined.

The “Loops for Selected SCC” frame allows the user to highlight the loops (for the selected

SCC in previous step). Positive feedback loops and negative feedback loops will be highlighted

in different colors as shown in Fig.6.7.
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Figure 6.6: Obtain SCC: (a)Schematic with SCC0 Highlighted; (b)Highlight SCC0 From the

“SCC & BPSet Identification” Form

In the second row of the frame, there is a click button “Flash or not?”. If “No” is chosen,

the selected loop is highlighted after the “DISP” button is clicked. If “YES” is chosen, each

circuit component in the loop is highlighted in sequence to show the loop more clearly.

6.4.1.3 Select Break Points

After the previous steps have been followed, all the feedback loops in each SCC and their

signs have been identified, and the algorithm in [72] is applied to find the BPS for each SCC.

In the “Break-point Set for Selected SCC” frame, there is an option “Break Only PFLs?”

as shown in Fig.6.8 (a). The default value is “Yes” and it means that ITV will try to obtain a

break point set (BPS) to break all PFLs and avoid breaking any NFLs. Clicking “Find\Next”

button will produce two results:

o If it can find such BPS, the BPS will be shown in the “Break-point Set” field. If more

than two such BPS are found, the user could choose either of them by clicking the “Find\Next”

button. For one dimensional verification, such kinds of BPS result in monotonic return function

of PFLs, which could be verified with higher efficient divide and contraction algorithms.
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Figure 6.7: Highlight Feedback Loops: (a) PFL of SCC0; (b) NFL of SCC0

o If no such BPS is found, ITV gives a warning as shown in Fig.6.8 (b). Then the user

should choose “No” as shown in Fig.6.8 (c). By clicking “Find\Next” button, the user can

selects break point(s) from the BPS to break all PFLs but also break some NFLs. In this case,

the return function is non-monotonic.

6.4.1.4 Generate Netlist

In the “Verify Selected SCC” frame as shown in Fig.6.8(c), there are two buttons: “Netlist”

and “Verify,” which should be clicked in sequence. First, clicking the button “Netlist”, a new

netlist with PFLs break at selected points is generated, which is used as an input file for

verification. Then, clicking the “Verify” button brings the “Run Verification Setting” form,

which will be discussed in the next sub-session.

6.4.2 Run Verification Settings

After breaking all the PFLs in each SCC, ITV applies the divide and contraction algorithms

for one dimensional analog verification to identify the undesired operating point. For two

dimensional verification, two dimensional vector field methods are used. Their usage and

functions are illustrated in this sub-section.
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Figure 6.8: Select Break Points: (a)Only Break PFLs; (b)The Warning for “Can’t Break Only

PFLs”; (c)Break Both PFL and NFL

6.4.2.1 One Dimensional Verification

For one dimensional verification, its “Run Verification Settings” form is given in ITV, as

shown in Fig.6.9. Its settings and choices are explained as follows:

In the “Basic Options” frame, the user could choose the error tolerance for algorithm, and

the specific environment settings.

3 “Temperature”: set environment temperature in Celsius.

3 “VDD”: set the voltage supply for the break point. It is worth mentioning that there

may be different VDDs in the circuit and this field only specifies the VDD for the break point

in the circuit.

3 “Process Corner”: set the process corner name for verification.

3 “Error Tolerance”: set the error tolerance for our divide and contraction algorithm. A

smaller error tolerance could provide a more accurate solution but would require more time. It

is only useful in one dimensional verification.
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Figure 6.9: ITV “Run Verification Settings” Form for B1P Circuits Stand-alone Verification

With these settings, ITV applies the divide and contraction verification methods to verify

the existence of undesired operating points in the circuit. After verification, results are reported

to the user.

6.4.2.2 PVT Variation Verification for B1P circuits

By use of the two dimensional vector field method, ITV can find the presence/absence of

undesired operating points in B1P circuits with PVT variations. The setting for B1P circuits

PVT variation is shown in Fig.6.10.

In addition to the previous setting, there is a “PVT Variation Analysis Options” frame

that defines the verification settings. First, the type of PVT variations should be chosen:

temperature variation (“T”), or both temperature and voltage supply variations (“T + V”),

or even temperature, voltage power supply and process variations (“T + V + P”).

3 “Vector Scale ratio”: set the ratio to scale the length of vectors in the two dimensional

vector fields.

3 “Resolution”: set the resolution for the two dimensional vector field. To verify the B1P

circuits with PVT variation, ITV draws a two dimensional vector field, with the first dimension

is the swept voltage source at the break node and the second dimension as the temperature
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Figure 6.10: ITV “Run Verification Settings” Form for B1P circuits PVT Verification

sweep. Thus, there are two dimensional resolutions: the resolution of “Break voltage range” and

the resolution of the “Temperature range.” With higher resolution, more accurate verification

can be achieved, but at the cost of more simulation time.

3 “Break voltage range”: the sweep voltage range for the inserted voltage source at the

selected break point.

3 “Temperature range”: the user can choose the temperature range for verification.

3 “Voltage supply”: this specifies the variation of the voltage supply to be verified. For each

voltage supply to be verified, a two dimensional vector field is given to identify the existence

of the undesired operating points.
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Figure 6.11: ITV “Run Verification Settings” Form for B2P Circuits Stand-alone Verification

3 “Process corners”: this specifies the process corners to be verified. For each corner, ITV

plots a two dimensional vector field for each specified voltage supply. For example, if there

are m different voltage supplies and n process corners to be verified, ITV draws m × n two

dimensional vector fields.

6.4.2.3 Verification for B2P circuits

For B2P circuits, ITV uses the two dimensional vector field method for both stand-alone

and PVT variation verification.

To verify the existence of undesired operating points in B2P circuits, two independent

voltage sources need to be swept according to the break-loop homotopy method. Thus, ITV

uses the two dimensional vector field method to analyze the existence of undesired operating

points in the B2P circuits. Its verification setting is shown in Fig.6.11.

The setting form is similar to that used for B1P circuits but some additional settings should

be given in the stand-alone verification for B2P circuits.
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3 “Vector Scale ratio”: set the ratio to scale the length of vectors in the two dimensional

vector field.

3 “Resolution”: set the resolution for the two dimensional vector field. To verify the B2P

circuits, ITV automatically inserts two independent voltage sources at two break points, and

their resolutions are chosen here.

3 “Break voltage1 range”: the sweep voltage range for the inserted voltage source at the

first break point.

3 “Break voltage2 range”: the sweep voltage range for the inserted voltage source at the

second break point.

With these settings, ITV employs the two dimensional vector field to identify the existence

of undesired operating points in circuits.

6.4.2.4 PVT Verification for 2D circuits

As with B1P circuits, ITV can verify B2P circuits with PVT variations. The process is

implemented by obtaining a series of two dimensional vector fields at different process/voltage

supply/temperature settings.

As with PVT variation verification for B1P circuits, the type of PVT variations should be

chosen. It can be verification with temperature variation (“T”) only, or with both temperature

and voltage power supply variations (“T + V”), or even with temperature, voltage power supply

and process variations (“T + V + P”).

3 “Vector Scale ratio”: set the ratio to scale the length of the vector in the two dimensional

vector field.

3 “Resolution”: set the resolution for the two dimensional vector field.

3 “Temperature”: choose the specific temperatures for verification. The difference from

the PVT variation for a B1P circuit is that a two dimensional vector field is given for each

temperature to be verified.

3 “Voltage supply 1”: this specifies the variation of voltage supply for the first inserted

voltage source. For each voltage supply, ITV draws a two dimensional vector field for each

specified temperature. For example, if there are m different voltage supplies and n temperatures
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Figure 6.12: ITV “Run Verification Settings” Form for B2P circuits PVT Verification

to be verified, ITV draws m × n two dimensional vector fields to verify whether undesired

operating points exist in the circuit.

3 “Voltage supply 2”: similar to the previous setting, but specify the variation of voltage

supplies for the second inserted voltage source.

3 “Process corners”: it specifies the variation of process corners to be verified. For example,

if there are m different temperatures, n voltage supply 1, l voltage supply 2 and t process corners

to be verified, ITV draws m× n× l × t two dimensional vector fields.

6.5 ITV Installation, Program Files and Demo Circuits

In this section, installation, each file used in the ITV program and benchmark circuits for

demo are briefly introduced. All of the files are under the directory:
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\\rs.ece.iastate.edu\Project\Multi state V erification\ITV \Release version\Latest

This directory is referred to as the “ITV directory” in this chapter.

6.5.1 ITV Installation

The tool installation is very easy and can be finished in 2 steps:

Step1 : copy the ITV directory to your virtuoso launch directory.

Step2 : Add the following code to the end of your cadence .cdsinit file:

ITVMenufile=simplifyFilename(”./ITV/customizedVerifyMenuList.il”)

procedure( TrUserPostInstallTrigger( args)

;;; creating the first menu item for the pulldown menu

unless( boundp(’TrMenuItemTwo)

TrMenuItemTwo = hiCreateMenuItem(

?name ’TrMenuItemTwo

?itemText ”&ITV Verification”

?callback ”load(ITVMenufile)”

)

);unless

when(

boundp(’schEditMenu) && !schEditMenu-¿TrMenuItemTwo

hiAddMenuItem(schCheckMenu TrMenuItemTwo)

)

);procedure

After it is installed, in Cadence Virtuoso Schematic Editor, in the check menu, there is an

item called “ITV verification, shown in Fig.6.4.
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6.5.2 Program Files in ITV

6.5.2.1 Scripts to Generate the Menu in Cadence

The script “customizedVerifyMenuList.il” is a Cadence SKILL script for generating the

interface in schematic editor, as shown in Fig. 6.4. It will generate the “SCC & BPSet

Identification form shown in Fig. 6.5. It calls other program files to implement the verification

tasks.

6.5.2.2 Program Files for Loop Identification and Break

All of these files are included in the “breakLoop” directory.

The top level script is the “createNetlist hier.il”; it is a SKILL script to generate the

interface between ITV program and Cadence Virtuoso environment.

“main.pl” is the top level perl script to convert a circuit netlist to DDG.

“findPath.pl” is the perl script that defines a function to identify all the branch-currents in

the netlist and is used by the “main.pl”.

“flattenNetlist.pl” is the perl script to flatten the hierarchy netlist , and it is used by the

“main.pl”.

On the basis of the DDG generated by “main.pl”, there are two SKILL scripts to partition

the DDG into SCC and identify the BPS in each SCC.

“identifySCC.il” is a SKILL script for finding all the SCCs and highlight them in the

Cadence.

“identifyBPS.il” is a SKILL script for finding the BPS for each SCC, and it calls the

“searchBreakPoints.pl” perl script to identify the BPS.

With the break points chosen in the previous step, the “autoGenerateNetlist.il” (in the

“breakLoop\autoModifyNetlist” under the ITV directory) automatically breaks the circuits

and adds the voltage source to sweep. It generates a netlist to be verified.
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6.5.2.3 Program Files for Run Verification Settings

After the loop is broken, ITV programs uses the files in the “runVerification” directory to

run the verification.

For the B1P circuits, it calls the “runVerification1D.il” to implement the verification.

For the B2P circuits, the “runVerification2D.il” would be applied.

In both cases, if it is a two dimensional verification, the two dimensional vector field method

is adopted, which is implemented in the “GNUGDCplot.pl”; otherwise, the divide and contrac-

tion method is used as defined in the “GNUGDC.pl”.

6.5.3 Demo Circuits in ITV

Several benchmark circuits are used as demo. They are in the “benchmark circuit\ITV demo”

directory.

“Wilson” is the so-called bootstrapped Vt reference circuit. It can be used as a basic

example of identifying undesired operating points.

“WilsonWstartup” is the bootstrapped Vt reference circuit with a startup circuit. It can

be used as an example of a circuit with one operating point.

“fixedbias banba widlar” is the Van Kessel-Banba circuit, which is the typical 2D circuit.

“Banba Widlar2SCC” is an example of a circuit with two SCCs.

6.6 Conclusion

In this chapter, an EDA tool called ”ITV” is proposed to identify undesired operating points

in analog and mixed-signal circuits. ITV automatically converts a circuit netlist to a Directed

Dependency Graph (DDG), partitioning the DDG into Strong Connected Components, and

finds all the PFLs and NFLs in each SCC. It then automatically identifies the break points to

break all the PFLs in each SCC. For a one dimensional verification, it applies the proposed

divide and contraction algorithms to determine the presence/absence of undesired operating

point. For a two dimensional verification, the two dimensional vector field method is applied
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to identify the existence of undesired operating points. Moreover, implementation and usage

of ITV have been discussed in detail in this chapter.
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CHAPTER 7. CONCLUSION

In this dissertation, two research topics are covered and each is illustrated in detail. First,

a low-cost, high-precision DAC structure based on OEM theory is proposed and its design

methodology is discussed. It can achieve high matching accuracy by application of the OEM

calibration to the resistors in unary weighted segments and calibration of the gain error between

different segments by use of calibration DAC (Cal DAC).

As a design example to verify the proposed structure, a high-precision DAC is designed in

a 130 nm Global Foundry (GF) CMOS process. The 130 nm GF process features high-density

digital circuits but lacks of high-precision resistors or any resistor trimming techniques, so

it is generally not suitable for any high-precision DAC design. However, we implemented our

design in such process from behavioral model to schematic and layout design. Complicated test

scheme and PCB design were also performed. The simulation and measurement results show

that the proposed DAC structure can greatly reduce the area requirement and make it possible

to implement a 17-bit DAC without using high-precision fabrication process. As a result, it

is shown that our proposed DAC structure can significantly lower the costs of high-precision

DAC design.

The second topic targeted in this dissertation is identification of the existence of undesired

operating points in analog circuits. In this dissertation, a divide and contraction verification

method against undesired operating points in analog circuits is proposed. Unlike traditional

methods of finding all operating points, this method targets only searches of those voltage

intervals containing undesired operating points. To achieve this, a systematic approach for

automatically identifying all positive and negative feedback loops in circuits is introduced. A

positive feedback loop breaking method and selection of breaking nodes are utilized to determine

whether a monotonic return function can be obtained. Depending on the monotonicity of the
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return function, two types of divide and contraction algorithms are proposed for use in efficiently

searching voltage intervals containing operating points.

In practice, designers also need to verify circuits with transistor sizing and PVT varia-

tions or identify the existence of undesired operating point in complicated circuits whose PFLs

cannot be broken at only one node (B2P circuits). This type of problem is called the two di-

mensional analog verification against undesired operating points. For this type of verification,

a two dimensional vector field method is proposed that can identify the existence of undesired

operating points effectively by visualizing the return functions in the circuits.

On the basis of the proposed verification methods against undesired operating points, an

EDA tool called “ITV” was developed for identifying undesired operating points in analog and

mixed-signal circuits, on the basis of the break-loop homotopy method. It first converts the

circuit into a corresponding graph and locates the break point to break all the positive feed-

back loops (PFLs). Then, it searches the voltage intervals that contain undesired operating

points by divide and contraction algorithms or the two dimensional vector field method. Sim-

ulation results show ITV to be effective and efficient in identifying undesired operating points

in a class of commonly used benchmark circuits, including bias generators, voltage references,

temperature sensors, and op-amp circuits.
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